Deciphering Intracellular Forces: Mechanical Interactions Shaping Mitochondrial Transport and Morphology
ORAL · Invited
Abstract
In this study, we employed high-resolution live-cell imaging and quantitative analyses to investigate mitochondrial behavior in Xenopus laevis melanophore cells. We tracked individual mitochondria with nanometer precision, examining their transport dynamics, shape fluctuations, and responses to mechanical forces. Our findings indicate that microtubules act as the primary scaffold for mitochondrial organization and transport, promoting elongation and influencing cellular distribution. Conversely, actin and microtubules have distinct roles in shaping mitochondrial morphology, with actin restricting organelle mobility and microtubules transmitting movement-induced jittering.
Also, we present an innovative quantitative approach to study the forces affecting mitochondria in living cells with minimal invasiveness. This tool enables the detection of localized mechanical impulses acting on these organelles, differentiating them from the background of cytoplasmic thermal fluctuations. Additionally, a numerical worm-like chain model incorporating thermal noise and external forces demonstrated that active force application is necessary for reproducing mitochondrial behaviors observed in living cells.
Overall, our findings highlight the complex mechanical interplay between mitochondria and the cytoskeleton and its importance in shaping mitochondrial behavior, impacting cellular homeostasis and function.
–
Publication: 1. Retraction of rod-like mitochondria during microtubule-dependent transport. M.C. De Rossi, V. Levi and L. Bruno. Bioscience Reports 38 BSR20180208 (2018)<br>2. Intracellular motor-driven transport of rod-like smooth organelles along microtubules. A. B. Fernández Casafuz, M. C. De Rossi and L. Bruno. Physical Review E 101, 062416 (2020)<br>3. Morphological fluctuations of individual mitochondria in living cells. A. B. Fernández Casafuz, M. C. De Rossi and L. Bruno. Journal of Physics: Condensed Matter. 34 094005<br>(2021)<br>4. Mitochondrial cellular organization and shape fluctuations are differentially modulated by cytoskeletal networks. A. B. Fernández Casafuz, M. C. De Rossi and L. Bruno. Scientific Reports. 13:4065. (2023)<br>5. Deciphering the intracellular forces shaping mitochondrial motion.Fernández Casafuz, A. B., Brigante, A. M., De Rossi, M. C., Monastra, A. G., & Bruno, L. . Scientific Reports, 14(1), 23914. (2024)<br><br>
Presenters
-
Luciana Bruno
Instituto de Cálculo,IC-CONICET, Universidad de Buenos Aires, Universidad de Buenos Aires
Authors
-
Luciana Bruno
Instituto de Cálculo,IC-CONICET, Universidad de Buenos Aires, Universidad de Buenos Aires
-
Agustina B Fernández Casafuz
Instituto de Cálculo, Universidad de Buenos Aires
-
Azul M Brigante
Universidad de Buenos Aires
-
María Cecilia De Rossi
Depto. Química Biológica, Universidad de Buenos Aires
-
Valeria Levi
Depto. Química Biológica, Universidad de Buenos Aires
-
Alejandro G Monastra
Universidad de Gral. Sarmiento