APS Logo

Quantum Geometry in Interacting Flat Bands

INVITED · MAR-A12 · ID: 2765631







Presentations

  • Flatband and Kähler Geometry: Moiré Fractionalization, Geometric Response and Lattice Realizations

    ORAL · Invited

    Publication: Submitted:<br>Theory of Generalized Landau Levels and Implication for non-Abelian States<br>arXiv:2405.14479<br><br>Published:<br>Exact Landau Level Description of Geometry and Interaction in a Flatband<br>Phys. Rev. Lett. 127, 246403<br><br>Planned:<br>Hall Viscosity of Generalized Landau Levels<br>Exact Lattice Models for All Landau Levels

    Presenters

    • Jie Wang

      Temple University

    Authors

    • Jie Wang

      Temple University

    View abstract →

  • Phase stiffness and projected optical sum rule in quantum many-body systems

    ORAL · Invited

    Publication: J. F. Mendez-Valderrama, Dan Mao, and Debanjan Chowdhury, Low-Energy Optical Sum Rule in Moiré Graphene, <br>Phys. Rev. Lett. 133, 196501 – Published 4 November 2024<br><br>Dan Mao, Juan Felipe Mendez-Valderrama, Debanjan Chowdhury, Is the low-energy optical absorption in correlated insulators controlled by quantum geometry? arXiv preprint arXiv:2410.16352<br><br>Dan Mao and Debanjan Chowdhury, Upper bounds on superconducting and excitonic phase stiffness for interacting isolated narrow bands, Phys. Rev. B 109, 024507 – Published 10 January 2024<br><br>Dan Mao and Debanjan Chowdhury, Diamagnetic response and phase stiffness for interacting isolated narrow bands, Proc. Natl. Acad. Sci. U.S.A., 120 (11) e2217816120,https://doi.org/10.1073/pnas.2217816120 (2023).

    Presenters

    • Dan Mao

      Cornell University, University of Zurich

    Authors

    • Dan Mao

      Cornell University, University of Zurich

    View abstract →

  • Topological Excitons and Their Superfluid Phase in Flat Chern Bands

    ORAL · Invited

    Publication: H.-Y. Xie, P. Ghaemi, M. Mitrano, and B. Uchoa, Theory of topological exciton insulators and condensates in flat Chern bands, Proc. Natl. Acad. Sci. U.S.A. 121 (35) e2401644121, https://doi.org/10.1073/pnas.2401644121 (2024).

    Presenters

    • Hong-Yi Xie

      University of Oklahoma

    Authors

    • Hong-Yi Xie

      University of Oklahoma

    • Bruno Uchoa

      University of Oklahoma

    View abstract →

  • The role of band geometry in fractional quantum Hall states in flat Chern bands

    ORAL · Invited

    Publication: Stability of fractional Chern insulators with a non-Landau level continuum limit, B. Andrews, M. Raja, N. Mishra, M. P. Zaletel, R. Roy, Phys. Rev. B 109, 245111 (2023)<br>Fractional Chern insulators with a non-Landau level continuum limit, D. Bauer, S. Talkington, F. Harper, B. Andrews, and R. Roy, Phys. Rev. B 105, 045144 (2022).<br>Quantum geometry and stability of the fractional quantum Hall effect in the Hofstadter model, D. Bauer, T. S. Jackson and R. Roy, Phys. Rev. B 93, 235133 (2016).<br>Geometric stability of topological lattice phases, T. S. Jackson, G. Mo ̈ller and R. Roy, Nat. Commun. 6, 8629 (2015).<br>Band geometry of fractional topological insulators, R. Roy, Phys. Rev. B 90, 075104 (2014).<br>Fractional quantum Hall physics in topological flat bands, S. A. Parameswaran, R. Roy and S. L. Sondhi, C. R. Physique 14, 816 (2013).

    Presenters

    • Rahul Roy

      University of California, Los Angeles

    Authors

    • Rahul Roy

      University of California, Los Angeles

    View abstract →