ML-Driven Discovery: Accelerating Real-World Impacts in Physics and Materials Science
INVITED · MAR-A10 · ID: 2763203
Presentations
-
Fueling the AI Revolution in Materials Science
ORAL · Invited
–
Presenters
-
Kristin Persson
Lawrence Berkeley National Laboratory
Authors
-
Kristin Persson
Lawrence Berkeley National Laboratory
-
-
Accelerating Materials Discovery with HPC and AI
ORAL · Invited
–
Publication: 1. Chen, C. and Ong, S.P., 2022. A universal graph deep learning interatomic potential for the periodic table. Nature Computational Science, 2(11), pp.718-728.<br>2. Chen, C., Nguyen, D.T., Lee, S.J., Baker, N.A., Karakoti, A.S., Lauw, L., Owen, C., Mueller, K.T., Bilodeau, B.A., Murugesan, V. and Troyer, M., 2024. Accelerating Computational Materials Discovery with Machine Learning and Cloud High-Performance Computing: from Large-Scale Screening to Experimental Validation. Journal of the American Chemical Society, 146(29), pp.20009-20018.
Presenters
-
Chi Chen
Microsoft
Authors
-
Chi Chen
Microsoft
-
-
Closing the Loop for Oxide Catalyst Design
ORAL · Invited
–
Presenters
-
Rafael Gomez-Bombarelli
Massachusetts Institute of Technology
Authors
-
Rafael Gomez-Bombarelli
Massachusetts Institute of Technology
-
-
Autonomous materials design laboratory
ORAL · Invited
–
Presenters
-
Shijing Sun
Authors
-
Shijing Sun
-
-
Machine Learning Materials Response to Electric Fields
ORAL · Invited
–
Presenters
-
Stefano Falletta
Harvard University, Harvard
Authors
-
Stefano Falletta
Harvard University, Harvard
-