APS Logo

Locating the QCD critical point using first principles through contours of constant entropy density

ORAL

Abstract

We propose a new method to investigate the existence and location of the conjectured high-temperature critical point of strongly interacting matter via contours of constant entropy density.

By approximating these lines as a power series in the baryon chemical potential $\mu_B$, one can extrapolate them from first-principle results at zero net-baryon density, and use them to locate the QCD critical point, including the associated first-order and spinodal lines. As a proof of principle, we employ currently available continuum-extrapolated first-principle results from the Wuppertal--Budapest collaboration to find a critical point at a temperature and a baryon chemical potential of $T_c = 114.3 \pm 6.9$ MeV and $\mu_{B,c} = 602.1 \pm 62.1$ MeV, respectively. We advocate for a more precise determination of the required expansion coefficients via lattice QCD simulations as a means of pinpointing the location of the critical endpoint in the phase diagram of strongly interacting matter.

Publication: arXiv:2410.16206

Presenters

  • Hitansh Mayank Shah

    University of Houston

Authors

  • Hitansh Mayank Shah

    University of Houston

  • Maurício Hippert

    Rio de Janeiro State University

  • Jorge Noronha

    University of Illinois at Urbana-Champaign

  • Claudia Ratti

    University of Houston

  • Volodymyr Vovchenko

    University of Houston