AI-Enabled X-ray Science at the Advanced Photon Source
ORAL · Invited
Abstract
However, these novel capabilities dramatically increase the complexity and volume of data generated by instruments at the new light sources. Conventional data processing and analysis methodologies become infeasible in the face of such large and varied data streams. The use of AI/ML methods is becoming indispensable for real-time analysis, data abstraction and decision making at advanced synchrotron light sources such as the APS. I will describe the use high-performance computing (HPC) along with AI on edge devices to enable real-time analysis of streaming data from x-ray characterization instruments at the APS.
–
Publication: 1. Kim, J. W., Cherukara, M. J., Tripathi, A., Jiang, Z., & Wang, J. (2021). Inversion of coherent surface scattering images via deep learning network. Applied Physics Letters, 119(19), 191601.<br>2. Yao, Y., Chan, H., Sankaranarayanan, S., Balaprakash, P., Harder, R. J., & Cherukara, M. J. (2021). AutoPhaseNN: Unsupervised Physics-aware Deep Learning of 3D Nanoscale Coherent Imaging. arXiv preprint arXiv:2109.14053.<br>3. Zhou, T., Cherukara, M., & Phatak, C. (2021). Differential programming enabled functional imaging with Lorentz transmission electron microscopy. npj Computational Materials, 7(1), 1-8.<br>4. Chan, H., Nashed, Y. S., Kandel, S., Hruszkewycz, S. O., Sankaranarayanan, S. K., Harder, R. J., & Cherukara, M. J. (2021). Rapid 3D nanoscale coherent imaging via physics-aware deep learning. Applied Physics Reviews, 8(2), 021407.<br>5. Cherukara, M. J., Zhou, T., Nashed, Y., Enfedaque, P., Hexemer, A., Harder, R. J., & Holt, M. V. (2020). AI-enabled high-resolution scanning coherent diffraction imaging. Applied Physics Letters, 117(4), 044103.<br>6. Cherukara, M. J., Nashed, Y. S., & Harder, R. J. (2018). Real-time coherent diffraction inversion using deep generative networks. Scientific reports, 8(1), 1-8.
Presenters
-
Mathew Cherukara
Authors
-
Mathew Cherukara