APS Logo

Covariant density functional theory: an estimation of systematic uncertainties

ORAL

Abstract

The systematic investigation of the ground state and fission properties of even-even actinides and superheavy nuclei with $Z=90-120$ from the two-proton up to two-neutron drip lines with proper assessment of systematic theoretical uncertainties has been performed for the first time in the framework of covariant density functional theory (CDFT). Four state-of-the-art globally tested covariant energy density functionals (CEDFs), namely, DD-PC1, DD-ME2, NL3* and PC-PK1, representing the major classes of the CDFT models are employed in the present study. Ground state deformations, binding energies, two neutron separation energies, $\alpha$-decay $Q_{\alpha}$ values and half-lives and the heights of fission barriers have been calculated for all these nuclei. Theoretical uncertainties in these physical observables and their evolution as a function of proton and neutron numbers have been quantified and their major sources have been identified. Spherical shell closures at $Z=120$, $N=184$ and $N=258$ and the structure of the single-particle (especially, high-$j$) states in their vicinities as well as nuclear matter properties of employed CEDFs are two major factors contributing into theoretical uncertainties.

Authors

  • Ahmad Taninah

    Mississippi State Univ

  • Peter Schauss

    University of Notre Dame, Los Alamos National Laboratory, North Carolina State University, University of Notre dame, Columbia University, Mississippi State Univ, University of Pennsylvania, Carnegie Mellon University, University of Puerto Rico at Humacao, JLAB, MIT, University of Alabama at Birmingham, Florida State University, NHMFL, University College Dublin, Department of Physics, Florida State University; National High Magnetic Field Laboratory, CNR-Instituto Nanoscienze, Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Department of Chemistry, Florida State University, University of Alabama at Birmingham, Department of Physics, Birmingham, AL 35294-1170,USA, Department of Chemistry, Virginia Polytechnic Institute and State University, Francis Marion University, University of Richmond, Valdosta State University, University of Pittsburgh, Fermi National Lab, university of minnesota, Univ of Virginia, Joint Quantum Institute, University of Maryland, Georgetown University, IonQ Inc.

  • Peter Schauss

    University of Notre Dame, Los Alamos National Laboratory, North Carolina State University, University of Notre dame, Columbia University, Mississippi State Univ, University of Pennsylvania, Carnegie Mellon University, University of Puerto Rico at Humacao, JLAB, MIT, University of Alabama at Birmingham, Florida State University, NHMFL, University College Dublin, Department of Physics, Florida State University; National High Magnetic Field Laboratory, CNR-Instituto Nanoscienze, Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Department of Chemistry, Florida State University, University of Alabama at Birmingham, Department of Physics, Birmingham, AL 35294-1170,USA, Department of Chemistry, Virginia Polytechnic Institute and State University, Francis Marion University, University of Richmond, Valdosta State University, University of Pittsburgh, Fermi National Lab, university of minnesota, Univ of Virginia, Joint Quantum Institute, University of Maryland, Georgetown University, IonQ Inc.