APS Logo

Modeling the DVCS Cross Section with Deep Learning

ORAL

Abstract

Imaging the 3D partonic structure of the nucleon is a fundamental goal of every major nuclear experimental program, such as the electron ion collider (EIC). Ji first proposed deeply virtual Compton scattering (DVCS) as a probe for imaging the spatial distribution of the partons by fourier transform of the exchanged momentum transfer between the initial and final proton. The extraction of observables from deeply virtual exclusive reactions in a clear and concise formalism was a necessity. We recently presented a completely covariant description of the DVCS process. In our helicity formalism, we extract the Compton form factors H and E separately using a generalization of the Rosenbluth method such that the dependence on Q2 is clear. In addition, using state of the art neural network techniques, we perform an analysis of the DVCS cross section and show initial steps toward a global neural network extraction of Compton form factors.

Authors

  • Brandon Kriesten

    Univ of Virginia, University of Virginia

  • Peter Schauss

    University of Notre Dame, Los Alamos National Laboratory, North Carolina State University, University of Notre dame, Columbia University, Mississippi State Univ, University of Pennsylvania, Carnegie Mellon University, University of Puerto Rico at Humacao, JLAB, MIT, University of Alabama at Birmingham, Florida State University, NHMFL, University College Dublin, Department of Physics, Florida State University; National High Magnetic Field Laboratory, CNR-Instituto Nanoscienze, Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Department of Chemistry, Florida State University, University of Alabama at Birmingham, Department of Physics, Birmingham, AL 35294-1170,USA, Department of Chemistry, Virginia Polytechnic Institute and State University, Francis Marion University, University of Richmond, Valdosta State University, University of Pittsburgh, Fermi National Lab, university of minnesota, Univ of Virginia, Joint Quantum Institute, University of Maryland, Georgetown University, IonQ Inc.

  • Peter Schauss

    University of Notre Dame, Los Alamos National Laboratory, North Carolina State University, University of Notre dame, Columbia University, Mississippi State Univ, University of Pennsylvania, Carnegie Mellon University, University of Puerto Rico at Humacao, JLAB, MIT, University of Alabama at Birmingham, Florida State University, NHMFL, University College Dublin, Department of Physics, Florida State University; National High Magnetic Field Laboratory, CNR-Instituto Nanoscienze, Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Department of Chemistry, Florida State University, University of Alabama at Birmingham, Department of Physics, Birmingham, AL 35294-1170,USA, Department of Chemistry, Virginia Polytechnic Institute and State University, Francis Marion University, University of Richmond, Valdosta State University, University of Pittsburgh, Fermi National Lab, university of minnesota, Univ of Virginia, Joint Quantum Institute, University of Maryland, Georgetown University, IonQ Inc.

  • Peter Schauss

    University of Notre Dame, Los Alamos National Laboratory, North Carolina State University, University of Notre dame, Columbia University, Mississippi State Univ, University of Pennsylvania, Carnegie Mellon University, University of Puerto Rico at Humacao, JLAB, MIT, University of Alabama at Birmingham, Florida State University, NHMFL, University College Dublin, Department of Physics, Florida State University; National High Magnetic Field Laboratory, CNR-Instituto Nanoscienze, Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Department of Chemistry, Florida State University, University of Alabama at Birmingham, Department of Physics, Birmingham, AL 35294-1170,USA, Department of Chemistry, Virginia Polytechnic Institute and State University, Francis Marion University, University of Richmond, Valdosta State University, University of Pittsburgh, Fermi National Lab, university of minnesota, Univ of Virginia, Joint Quantum Institute, University of Maryland, Georgetown University, IonQ Inc.

  • Peter Schauss

    University of Notre Dame, Los Alamos National Laboratory, North Carolina State University, University of Notre dame, Columbia University, Mississippi State Univ, University of Pennsylvania, Carnegie Mellon University, University of Puerto Rico at Humacao, JLAB, MIT, University of Alabama at Birmingham, Florida State University, NHMFL, University College Dublin, Department of Physics, Florida State University; National High Magnetic Field Laboratory, CNR-Instituto Nanoscienze, Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Department of Chemistry, Florida State University, University of Alabama at Birmingham, Department of Physics, Birmingham, AL 35294-1170,USA, Department of Chemistry, Virginia Polytechnic Institute and State University, Francis Marion University, University of Richmond, Valdosta State University, University of Pittsburgh, Fermi National Lab, university of minnesota, Univ of Virginia, Joint Quantum Institute, University of Maryland, Georgetown University, IonQ Inc.