FMDA/B: Machine-Learned Interatomic Potentials
ORAL · W04 · ID: 3362504
Presentations
-
Progress Towards Quantum Accurate Atomistic Simulations of Shock Propagation and Release in DT
ORAL
–
Publication: J. X. D'Souza, S.X. Hu, D. I. Mihaylov, V. V. Karasiev, V. N. Goncharov, and S. Zhang, "Designing a Quantum-Accurate Machine-Learning Potential to Enable Large-Scale Simulations of Deuterium Under Shock," Physics of Plasmas (2024) [submitted]
Presenters
-
Justin X D'Souza
University of Rochester
Authors
-
Justin X D'Souza
University of Rochester
-
Deyan I Mihaylov
University of Rochester
-
Suxing Hu
University of Rochester
-
Valentin V Karasiev
University of Rochester
-
Valeri N Goncharov
University of Rochester
-
Shuai Zhang
University of Rochester, Laboratory for Laser Energetics, University of Rochester
-
-
Supercritcal to Superionic: ACE'ing the response of water, hydrocarbons, and ammonia under shock conditions
ORAL
–
Publication: (i) Atomic Cluster Expansion Potential for Large Scale Simulations of Hydrocarbons Under Shock Compression, J. Chem. Phys. 161, 064303 (2024)
(ii) Accurate and efficient parameterization of an atomic cluster expansion (ACE) potential for ammonia under extreme conditionsPresenters
-
Jonathan T Willman
Los Alamos National Laboratory
Authors
-
Jonathan T Willman
Los Alamos National Laboratory
-
Romain Perriot
Theoretical Division, Los Alamos National Laboratory
-
Christopher C Ticknor
Los Alamos National Laboratory (LANL)
-
-
TATB under Dynamics Compression from Machine Leaning Simulations
ORAL
–
Presenters
-
Huy Pham
Lawrence Livermore National Laboratory
Authors
-
Huy Pham
Lawrence Livermore National Laboratory
-
Nir Goldman
Lawrence Livermore National Laboratory
-
Laurence E. Fried
Lawrence Livermore National Laboratory
-
-
Atomistic modelling of the orientation dependence of shock-induced phase transitions in tin
ORAL
–
Presenters
-
Marti Puig Fantauzzi
University of Oxford
Authors
-
Marti Puig Fantauzzi
University of Oxford
-
Marti Puig Fantauzzi
University of Oxford
-
Daniel E Eakins
University of Oxford, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
-
Antoine Jerusalem
University of Oxford
-
Simon Wilkinson
AWE
-
Mashroor S Nitol
Los Alamos National Laboratory
-
Patrick G Heighway
University of Oxford
-
-
Data-Driven Dynamics: Machine Learned Interatomic Potential for Simulating Materials Under Extreme Shock Conditions
ORAL
–
Presenters
-
Jared K Averitt
Los Alamos National Laboratory
Authors
-
Jared K Averitt
Los Alamos National Laboratory
-
Chun-Shang Wong
Los Alamos National Laboratory (LANL)
-
Eric N Loomis
Los Alamos National Laboratory (LANL), Los Alamos National Laboratory
-
Nicholas Sirica
Los Alamos National Laboratory (LANL)
-
David S Montgomery
Los Alamos National Laboratory (LANL)
-
Pawel Kozlowski
Los Alamos National Laboratory
-
Tyler Eastmond
HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne National Laboratory
-
Rohit Berlia
Arizona State University
-
Shruti Sharma
State Univ of NY - Stony Brook
-
Jagannathan Rajagopalan
Arizona State University
-
Pedro Peralta
Arizona State University
-
Pinaki Das
Washington State University
-
Adam Schuman
Washington State University
-
Nicholas Sinclair
Washington State University
-
Richard Alma Messerly
Los Alamos National Laboratory (LANL)
-
Nicholas E Lubbers
Los Alamos National Laboratory (LANL)
-
Travis Jones
Los Alamos National Laboratory (LANL)
-
Kipton Marcos Barros
Los Alamos National Laboratory (LANL)
-
Sergei Tretiak
Los Alamos National Laboratory (LANL)
-
Bejamin T Nebgen
Los Alamos National Laboratory (LANL), Los Alamos National Laboratory
-