APS Logo

BCS $d$-wave behavior in the THz electrodynamic response of electron-doped cuprate superconductors

ORAL

Abstract

Although cuprate superconductors have been intensively studied for the past decades, there is no consensus regarding the microscopic origin of their superconductivity. In this work, we measure the low-energy electrodynamic response of slightly underdoped and overdoped La$_{2-x}$Ce$_{x}$CuO$_{4}$ thin films using time-domain terahertz (THz) spectroscopy to determine the temperature and field dependence of the superfluid spectral weight. We show that the temperature dependence obeys the relation $n_{s\, }$\textasciitilde 1-($T/T_{c})^{2}$, typical for dirty limit BCS-like $d$-wave superconductors. Furthermore, the magnetic field dependence was found to follow a sublinear $B^{1/2}$ form, which supports predictions based on a $d$-wave symmetry for the superconducting gap. These observations imply that the superconducting order in these electron-doped cuprates can be well described in terms of a disordered BCS $d$-wave formalism.

Authors

  • Zhenisbek Tagay

    Johns Hopkins University

  • Blakesley Burkhart

    Massachusetts Institute of Technology, None, University of Colorado Boulder, Virginia Tech, MIT Haystack Observatory, University of Alabama, Johns Hopkins University, University of Maryland College Park, University of Illinois Urbana Champaign, Rutgers University, Institute of Solar-Terrestrial Physics, New Jersey Inst of Tech, Flatiron Institute, Rutgers, The State University of New Jersey, University of KwaZulu-Natal, Los Alamos National Laboratory, The College of William \& Mary, Cornell University, Cornell University, California Institute of Technology, California Institute of Technology, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), New Jersey Institute of Technology, New Jersey Institute of Tech, University of Applied Sciences and Arts Northwestern Switzerland, Princeton University, University of Pittsburgh, DEVCOM Army Research Lab, University of Louisville, University of Cape Town, Rutgers University/Flatiron Institute, Center for Astrophysics, Harvard & Smithsonian, Research School of Astronomy and Astrophysics, The Australian National University, Rutgers, the State University of New Jersey

  • Blakesley Burkhart

    Massachusetts Institute of Technology, None, University of Colorado Boulder, Virginia Tech, MIT Haystack Observatory, University of Alabama, Johns Hopkins University, University of Maryland College Park, University of Illinois Urbana Champaign, Rutgers University, Institute of Solar-Terrestrial Physics, New Jersey Inst of Tech, Flatiron Institute, Rutgers, The State University of New Jersey, University of KwaZulu-Natal, Los Alamos National Laboratory, The College of William \& Mary, Cornell University, Cornell University, California Institute of Technology, California Institute of Technology, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), New Jersey Institute of Technology, New Jersey Institute of Tech, University of Applied Sciences and Arts Northwestern Switzerland, Princeton University, University of Pittsburgh, DEVCOM Army Research Lab, University of Louisville, University of Cape Town, Rutgers University/Flatiron Institute, Center for Astrophysics, Harvard & Smithsonian, Research School of Astronomy and Astrophysics, The Australian National University, Rutgers, the State University of New Jersey

  • Blakesley Burkhart

    Massachusetts Institute of Technology, None, University of Colorado Boulder, Virginia Tech, MIT Haystack Observatory, University of Alabama, Johns Hopkins University, University of Maryland College Park, University of Illinois Urbana Champaign, Rutgers University, Institute of Solar-Terrestrial Physics, New Jersey Inst of Tech, Flatiron Institute, Rutgers, The State University of New Jersey, University of KwaZulu-Natal, Los Alamos National Laboratory, The College of William \& Mary, Cornell University, Cornell University, California Institute of Technology, California Institute of Technology, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), New Jersey Institute of Technology, New Jersey Institute of Tech, University of Applied Sciences and Arts Northwestern Switzerland, Princeton University, University of Pittsburgh, DEVCOM Army Research Lab, University of Louisville, University of Cape Town, Rutgers University/Flatiron Institute, Center for Astrophysics, Harvard & Smithsonian, Research School of Astronomy and Astrophysics, The Australian National University, Rutgers, the State University of New Jersey

  • Blakesley Burkhart

    Massachusetts Institute of Technology, None, University of Colorado Boulder, Virginia Tech, MIT Haystack Observatory, University of Alabama, Johns Hopkins University, University of Maryland College Park, University of Illinois Urbana Champaign, Rutgers University, Institute of Solar-Terrestrial Physics, New Jersey Inst of Tech, Flatiron Institute, Rutgers, The State University of New Jersey, University of KwaZulu-Natal, Los Alamos National Laboratory, The College of William \& Mary, Cornell University, Cornell University, California Institute of Technology, California Institute of Technology, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), New Jersey Institute of Technology, New Jersey Institute of Tech, University of Applied Sciences and Arts Northwestern Switzerland, Princeton University, University of Pittsburgh, DEVCOM Army Research Lab, University of Louisville, University of Cape Town, Rutgers University/Flatiron Institute, Center for Astrophysics, Harvard & Smithsonian, Research School of Astronomy and Astrophysics, The Australian National University, Rutgers, the State University of New Jersey

  • Blakesley Burkhart

    Massachusetts Institute of Technology, None, University of Colorado Boulder, Virginia Tech, MIT Haystack Observatory, University of Alabama, Johns Hopkins University, University of Maryland College Park, University of Illinois Urbana Champaign, Rutgers University, Institute of Solar-Terrestrial Physics, New Jersey Inst of Tech, Flatiron Institute, Rutgers, The State University of New Jersey, University of KwaZulu-Natal, Los Alamos National Laboratory, The College of William \& Mary, Cornell University, Cornell University, California Institute of Technology, California Institute of Technology, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), New Jersey Institute of Technology, New Jersey Institute of Tech, University of Applied Sciences and Arts Northwestern Switzerland, Princeton University, University of Pittsburgh, DEVCOM Army Research Lab, University of Louisville, University of Cape Town, Rutgers University/Flatiron Institute, Center for Astrophysics, Harvard & Smithsonian, Research School of Astronomy and Astrophysics, The Australian National University, Rutgers, the State University of New Jersey