APS Logo

Coronal Magnetic Field Measurements along a Partially Erupting Filament in a Solar Flare

ORAL

Abstract

Magnetic flux ropes are the centerpiece of solar eruptions. Direct measurements for the magnetic field of flux ropes are crucial for understanding the triggering and energy release processes, yet they remain heretofore elusive. Here we report microwave imaging spectroscopy observations of an M1.4-class solar flare that occurred on 2017 September 6, using data obtained by the Expanded Owens Valley Solar Array. This flare event is associated with a partial eruption of a twisted filament observed in H$\alpha$ by the Goode Solar Telescope at the Big Bear Solar Observatory. The extreme ultraviolet (EUV) and X-ray signatures of the event are generally consistent with the standard scenario of eruptive flares, with the presence of double flare ribbons connected by a bright flare arcade. Intriguingly, this partial eruption event features a microwave counterpart, whose spatial and temporal evolution closely follow the filament seen in H$\alpha$ and EUV. The spectral properties of the microwave source are consistent with nonthermal gyrosynchrotron radiation. Using spatially resolved microwave spectral analysis, we derive the magnetic field strength along the filament spine, which ranges from 600--1400 Gauss from its apex to the legs. The results agree well with the non-linear force-free mag

Authors

  • Yuqian Wei

    New Jersey Institute of Tech

  • Blakesley Burkhart

    Massachusetts Institute of Technology, None, University of Colorado Boulder, Virginia Tech, MIT Haystack Observatory, University of Alabama, Johns Hopkins University, University of Maryland College Park, University of Illinois Urbana Champaign, Rutgers University, Institute of Solar-Terrestrial Physics, New Jersey Inst of Tech, Flatiron Institute, Rutgers, The State University of New Jersey, University of KwaZulu-Natal, Los Alamos National Laboratory, The College of William \& Mary, Cornell University, Cornell University, California Institute of Technology, California Institute of Technology, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), New Jersey Institute of Technology, New Jersey Institute of Tech, University of Applied Sciences and Arts Northwestern Switzerland, Princeton University, University of Pittsburgh, DEVCOM Army Research Lab, University of Louisville, University of Cape Town, Rutgers University/Flatiron Institute, Center for Astrophysics, Harvard & Smithsonian, Research School of Astronomy and Astrophysics, The Australian National University, Rutgers, the State University of New Jersey

  • Blakesley Burkhart

    Massachusetts Institute of Technology, None, University of Colorado Boulder, Virginia Tech, MIT Haystack Observatory, University of Alabama, Johns Hopkins University, University of Maryland College Park, University of Illinois Urbana Champaign, Rutgers University, Institute of Solar-Terrestrial Physics, New Jersey Inst of Tech, Flatiron Institute, Rutgers, The State University of New Jersey, University of KwaZulu-Natal, Los Alamos National Laboratory, The College of William \& Mary, Cornell University, Cornell University, California Institute of Technology, California Institute of Technology, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), New Jersey Institute of Technology, New Jersey Institute of Tech, University of Applied Sciences and Arts Northwestern Switzerland, Princeton University, University of Pittsburgh, DEVCOM Army Research Lab, University of Louisville, University of Cape Town, Rutgers University/Flatiron Institute, Center for Astrophysics, Harvard & Smithsonian, Research School of Astronomy and Astrophysics, The Australian National University, Rutgers, the State University of New Jersey

  • Blakesley Burkhart

    Massachusetts Institute of Technology, None, University of Colorado Boulder, Virginia Tech, MIT Haystack Observatory, University of Alabama, Johns Hopkins University, University of Maryland College Park, University of Illinois Urbana Champaign, Rutgers University, Institute of Solar-Terrestrial Physics, New Jersey Inst of Tech, Flatiron Institute, Rutgers, The State University of New Jersey, University of KwaZulu-Natal, Los Alamos National Laboratory, The College of William \& Mary, Cornell University, Cornell University, California Institute of Technology, California Institute of Technology, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), New Jersey Institute of Technology, New Jersey Institute of Tech, University of Applied Sciences and Arts Northwestern Switzerland, Princeton University, University of Pittsburgh, DEVCOM Army Research Lab, University of Louisville, University of Cape Town, Rutgers University/Flatiron Institute, Center for Astrophysics, Harvard & Smithsonian, Research School of Astronomy and Astrophysics, The Australian National University, Rutgers, the State University of New Jersey

  • Blakesley Burkhart

    Massachusetts Institute of Technology, None, University of Colorado Boulder, Virginia Tech, MIT Haystack Observatory, University of Alabama, Johns Hopkins University, University of Maryland College Park, University of Illinois Urbana Champaign, Rutgers University, Institute of Solar-Terrestrial Physics, New Jersey Inst of Tech, Flatiron Institute, Rutgers, The State University of New Jersey, University of KwaZulu-Natal, Los Alamos National Laboratory, The College of William \& Mary, Cornell University, Cornell University, California Institute of Technology, California Institute of Technology, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), New Jersey Institute of Technology, New Jersey Institute of Tech, University of Applied Sciences and Arts Northwestern Switzerland, Princeton University, University of Pittsburgh, DEVCOM Army Research Lab, University of Louisville, University of Cape Town, Rutgers University/Flatiron Institute, Center for Astrophysics, Harvard & Smithsonian, Research School of Astronomy and Astrophysics, The Australian National University, Rutgers, the State University of New Jersey

  • Blakesley Burkhart

    Massachusetts Institute of Technology, None, University of Colorado Boulder, Virginia Tech, MIT Haystack Observatory, University of Alabama, Johns Hopkins University, University of Maryland College Park, University of Illinois Urbana Champaign, Rutgers University, Institute of Solar-Terrestrial Physics, New Jersey Inst of Tech, Flatiron Institute, Rutgers, The State University of New Jersey, University of KwaZulu-Natal, Los Alamos National Laboratory, The College of William \& Mary, Cornell University, Cornell University, California Institute of Technology, California Institute of Technology, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), New Jersey Institute of Technology, New Jersey Institute of Tech, University of Applied Sciences and Arts Northwestern Switzerland, Princeton University, University of Pittsburgh, DEVCOM Army Research Lab, University of Louisville, University of Cape Town, Rutgers University/Flatiron Institute, Center for Astrophysics, Harvard & Smithsonian, Research School of Astronomy and Astrophysics, The Australian National University, Rutgers, the State University of New Jersey