APS Logo

On Propagation of Electron Holes in Current Sheets

ORAL

Abstract

Spacecraft measurements around reconnecting current sheets in the Earth's magnetotail show the presence of electron holes with distinctly different velocities. Fast electron holes are considered to be the evidence of electron bump-on-tail instabilities, while slow electron holes are thought to be the evidence of electron two-stream and Buneman instabilities. But there is another possible mechanism of formation of the slow electron holes. In the case of a sufficiently long lifetime, electron holes observed aboard a spacecraft might be generated not locally, but might reach the spacecraft from a distant generation region. In this report, we present the results of our study exploring, for the first time, this mechanism via 1.5D Vlasov simulations of the electron hole propagation in non-uniform magnetic and electric fields typical of current sheets and, particularly, of the Earth's magnetotail current sheet. We demonstrate how parameters of the electron holes evolve as the holes propagate in the inhomogeneous plasma of the current sheet. The simulations indicate that in the case of sufficiently long lifetime, slow electron holes might be indeed produced due to braking of initially fast electron holes in the course of their propagation.

Authors

  • Ilya Kuzichev

    New Jersey Inst of Tech, New Jersey Institute of Technology, Newark, NJ, USA

  • Anuradha Gupta

    New Jersey Inst of Tech, Pennsylvania State University, Bard College, University of Mississippi, Drexel Univ, Collaborator, University of Dayton, Morgan State University, Louisiana State University, University of Geneva, Instituto Superior Tecnico - Lisboa, Department of Biochemistry and Molecular Biology, Rutgers University, Institute for Quantitative Biomedicine, Rutgers University, Pennsylvania State University, and University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, Department of Chemical Engineering, New Jersey Institute of Technology, Department of Physics and Astronomy, Rutgers University-New Brunswick, Department of Physics, Rutgers University, Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany, Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland, The MacDiarmid Institute for Advanced Materials and Nanotechnology, 1010 Auckland, New Zealand, Department of Physics, College of William & Mary, Williamsburg, VA 23187-8795, USA, New Jersey Institute of Technology, Newark, NJ, USA, University of California, Los Angeles, CA, USA, University of California, Berkeley, CA, USA, Space Research Institute of RAS, Moscow, Russia, Georgetown University, Institut Polytechnique de Paris, University of Delaware, Brookhaven National Laboratory, San Diego State University, University of Chicago, University of Illinois at Chicago, Argonne National Laboratory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA, University of Washington

  • Anuradha Gupta

    New Jersey Inst of Tech, Pennsylvania State University, Bard College, University of Mississippi, Drexel Univ, Collaborator, University of Dayton, Morgan State University, Louisiana State University, University of Geneva, Instituto Superior Tecnico - Lisboa, Department of Biochemistry and Molecular Biology, Rutgers University, Institute for Quantitative Biomedicine, Rutgers University, Pennsylvania State University, and University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, Department of Chemical Engineering, New Jersey Institute of Technology, Department of Physics and Astronomy, Rutgers University-New Brunswick, Department of Physics, Rutgers University, Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany, Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland, The MacDiarmid Institute for Advanced Materials and Nanotechnology, 1010 Auckland, New Zealand, Department of Physics, College of William & Mary, Williamsburg, VA 23187-8795, USA, New Jersey Institute of Technology, Newark, NJ, USA, University of California, Los Angeles, CA, USA, University of California, Berkeley, CA, USA, Space Research Institute of RAS, Moscow, Russia, Georgetown University, Institut Polytechnique de Paris, University of Delaware, Brookhaven National Laboratory, San Diego State University, University of Chicago, University of Illinois at Chicago, Argonne National Laboratory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA, University of Washington

  • Anuradha Gupta

    New Jersey Inst of Tech, Pennsylvania State University, Bard College, University of Mississippi, Drexel Univ, Collaborator, University of Dayton, Morgan State University, Louisiana State University, University of Geneva, Instituto Superior Tecnico - Lisboa, Department of Biochemistry and Molecular Biology, Rutgers University, Institute for Quantitative Biomedicine, Rutgers University, Pennsylvania State University, and University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, Department of Chemical Engineering, New Jersey Institute of Technology, Department of Physics and Astronomy, Rutgers University-New Brunswick, Department of Physics, Rutgers University, Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany, Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland, The MacDiarmid Institute for Advanced Materials and Nanotechnology, 1010 Auckland, New Zealand, Department of Physics, College of William & Mary, Williamsburg, VA 23187-8795, USA, New Jersey Institute of Technology, Newark, NJ, USA, University of California, Los Angeles, CA, USA, University of California, Berkeley, CA, USA, Space Research Institute of RAS, Moscow, Russia, Georgetown University, Institut Polytechnique de Paris, University of Delaware, Brookhaven National Laboratory, San Diego State University, University of Chicago, University of Illinois at Chicago, Argonne National Laboratory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA, University of Washington

  • Anuradha Gupta

    New Jersey Inst of Tech, Pennsylvania State University, Bard College, University of Mississippi, Drexel Univ, Collaborator, University of Dayton, Morgan State University, Louisiana State University, University of Geneva, Instituto Superior Tecnico - Lisboa, Department of Biochemistry and Molecular Biology, Rutgers University, Institute for Quantitative Biomedicine, Rutgers University, Pennsylvania State University, and University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, Department of Chemical Engineering, New Jersey Institute of Technology, Department of Physics and Astronomy, Rutgers University-New Brunswick, Department of Physics, Rutgers University, Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany, Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland, The MacDiarmid Institute for Advanced Materials and Nanotechnology, 1010 Auckland, New Zealand, Department of Physics, College of William & Mary, Williamsburg, VA 23187-8795, USA, New Jersey Institute of Technology, Newark, NJ, USA, University of California, Los Angeles, CA, USA, University of California, Berkeley, CA, USA, Space Research Institute of RAS, Moscow, Russia, Georgetown University, Institut Polytechnique de Paris, University of Delaware, Brookhaven National Laboratory, San Diego State University, University of Chicago, University of Illinois at Chicago, Argonne National Laboratory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA, University of Washington