Multivariable quantum signal processing (M-QSP): prophecies of the two-headed oracle
ORAL
Abstract
Recent work shows that quantum signal processing (QSP) and its lifted version, quantum singular value transformation (QSVT), unify and improve the presentation of most quantum algorithms. QSP/QSVT characterize the ability, by alternating ansätze, to obliviously transform the singular values of subsystems of unitary matrices by polynomial functions; these algorithms are stable and well-understood. That said, QSP/QSVT require consistent access to a single oracle, saying nothing about computing joint properties of two oracles; these can be far cheaper to determine given an ability to pit oracles against one another coherently.
This work introduces a corresponding theory of QSP over multiple variables: M-QSP. Surprisingly, despite the non-existence of the fundamental theorem of algebra for multivariable polynomials, there exist necessary and sufficient conditions under which a desired stable multivariable polynomial transformation is possible. Moreover, the classical subroutines used by QSP protocols survive in the multivariable setting for non-obvious reasons, and remain numerically stable. Up to a well-defined conjecture, we give proof that the family of achievable multivariable transforms is as loosely constrained as could be expected. The unique ability of M-QSP to obliviously approximate joint functions of multiple variables coherently leads to novel speedups incommensurate with those of other quantum algorithms, and provides a bridge from quantum algorithms to algebraic geometry.
This work introduces a corresponding theory of QSP over multiple variables: M-QSP. Surprisingly, despite the non-existence of the fundamental theorem of algebra for multivariable polynomials, there exist necessary and sufficient conditions under which a desired stable multivariable polynomial transformation is possible. Moreover, the classical subroutines used by QSP protocols survive in the multivariable setting for non-obvious reasons, and remain numerically stable. Up to a well-defined conjecture, we give proof that the family of achievable multivariable transforms is as loosely constrained as could be expected. The unique ability of M-QSP to obliviously approximate joint functions of multiple variables coherently leads to novel speedups incommensurate with those of other quantum algorithms, and provides a bridge from quantum algorithms to algebraic geometry.
–
Publication: Published in Quantum: https://doi.org/10.22331/q-2022-09-20-811
Presenters
-
Zane M Rossi
Massachusetts Institute of Technology
Authors
-
Zane M Rossi
Massachusetts Institute of Technology