APS Logo

Electrolyte gated synaptic transistor based on an ultra-thin film of La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>

ORAL

Abstract

Developing electronic devices able to reproduce efficiently synaptic functionality is essential towards implementing fast and low energy consuming neuromorphic computing systems. Hybrid ionic/electronic three-terminal synaptic transistors are promising as artificial synapses since they can process information and learn simultaneously. In this work, we report on an electrolyte gated synaptic transistor based on an ultra-thin epitaxial film of La0.7Sr0.3MnO3 which is close to a metal-insulator transition. The dynamic control of oxygen composition of the manganite ultra-thin film with voltage pulses applied through the gate terminal allows reversibly modulating its electronic properties in a non-volatile manner. The conductance modulation can be finely tuned with the amplitude, duration and number of gating pulses, providing different alternatives to gradually update the synaptic weights. The transistor implements essential synaptic features such as excitatory postsynaptic potential, paired-pulse facilitation, long-term potentiation/depression of synaptic weights and spike-time-dependent plasticity (STDP). These results constitute an important step for the development of neuromorphic computing devices based on correlated manganites and open new paths towards enhancing the functionalities of synaptic transistors by using a half metallic ferromagnet as the transistor channel.

Publication: A paper related to this work will be submitted in the following days/weeks.

Presenters

  • miguel romera

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain.

Authors

  • miguel romera

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain.

  • alejandro lopez

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain. IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain.

  • Javier Tornos

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain.

  • andrea peralta

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain.

  • isabel barbero

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain.

  • gabriel Sanchez-Santolino

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain.

  • Maria Varela

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain.

  • Alberto Rivera

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain., Universidad Complutense de Madrid

  • Carlos Leon

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain.

  • Jacobo Santamaria

    GFMC, Dept. Física de Materiales, Facultad de Física, Universidad Complutense de Madrid, Madrid 28040, Spain., Univ Complutense, Universidad Complutense de Madrid