Even-Denominator Fractional Quantum Hall State at Filling Factor ν = 3/4
ORAL
Abstract
Fractional quantum Hall states (FQHSs) exemplify exotic phases of low-disorder two-dimensional (2D) electron systems when electron-electron interaction dominates over the thermal and kinetic energies. Particularly intriguing among the FQHSs are those observed at even-denominator Landau level filling factors, as their quasiparticles are generally believed to obey non-Abelian statistics and be of potential use in topological quantum computing. Such states, however, are very rare and fragile, and are typically observed in the excited Landau level of 2D electron systems with the lowest amount of disorder. Here we report the observation of a new and unexpected even-denominator FQHS at filling factor ν = 3/4 in a GaAs 2D hole system with an exceptionally high quality (mobility) [1]. Our magnetotransport measurements reveal a strong minimum in the longitudinal resistance at ν = 3/4, accompanied by a developing Hall plateau centered at (h/e2)/(3/4). This even-denominator FQHS is very unusual as it is observed in the lowest Landau level and in a 2D hole system. While its origin is not entirely not entirely clear, it is likely a non-Abelian state, emerging from the residual interaction between composite fermions.
–
Publication: [1] Chengyu Wang et al., Phys. Rev. Lett. 129, 156801 (2022)
Presenters
-
Chengyu Wang
Princeton University
Authors
-
Chengyu Wang
Princeton University
-
Adbhut Gupta
Princeton University
-
Siddharth Kumar Singh
Princeton University
-
Edwin Y Chung
Princeton University, University of Maryland, Laboratory of Physical Sciences
-
Loren N Pfeiffer
Princeton University
-
Ken W West
Princeton University
-
Kirk W Baldwin
Princeton University
-
Roland Winkler
Northern Illinois University
-
Mansour Shayegan
Princeton University