APS Logo

Universal Eigenvalue Distribution for Locally Interacting Quantum Systems

ORAL

Abstract

Wigner has shown that the eigenvalue distribution of a Gaussian orthogonal or unitary ensemble of random matrices approaches a semicircle in the thermodynamic limit.[1] Here, we show that the joint eigenvalue distribution of locally interacting quantum systems, that is, ensembles of finite dimensional subsystems with local interactions between them, approaches a Gaussian distribution as the number of subsystems is taken to infinity. In the talk, we present our analytical results supported by numerical data and discuss possible implications of a Gaussian density of states for physical problems.

Publication: T. Hofmann, T. Helbig, R. Thomale, and M. Greiter. Universal Eigenvalue Distribution for Locally Interacting Quantum Systems. In preparation.

Presenters

  • Tobias Hofmann

    Julius-Maximilians University of Wuerzburg

Authors

  • Tobias Hofmann

    Julius-Maximilians University of Wuerzburg

  • Tobias Helbig

    Julius-Maximilians University of Wuerzburg

  • Ronny Thomale

    Julius-Maximilians University of Wuerzburg, Julius-Maximilians University of Wuerzbu, Institut für Theoretische Physik und Astrophysik Universität Würzburg, 97074 Würzburg, Germany, University of Wuerzburg

  • Martin Greiter

    Julius-Maximilians University of Wuerzburg