Engineering magnetic transition metal chalcogenide-based quantum interfaces
ORAL
Abstract
Significant progress has been made in conceptualizing geometric aspects of condensed matter <!--[if supportFields]>style='mso-spacerun:yes'> ADDIN EN.CITE
Chi202210039[1]10039app="EN" db-id="avzpzzze1rf0t0efw27ptptsfpp5t0fd5axw"
timestamp="1663717116">10039name="Journal
Article">17Hang
ChiJagadeesh S.
MooderaProgress
and prospects in the quantum anomalous Hall effectAPL
MaterialsAPL
MaterialsAPL
Mater.09090310920220062https://doi.org/10.1063/5.010098910.1063/5.0100989style='mso-element:field-separator'>[1]. Intertwining topology and low-dimensional magnetism, particularly at intrinsic/hybrid interfaces leveraging disparate quantum features, offers an exciting arena for exploiting novel magnetic phenomena towards disruptive memory, logic and information technologies. The extraordinary correlations among charge, spin, orbital and lattice degrees of freedom, renders magnetic transition metal chalcogenides (TMCs) promising for exotic topological phenomena. We highlight here two typical TMC family of materials, namely, ferromagnetic chromium telluride and antiferromagnetic manganese telluride. Cr1-δTe is an appealing platform for exploring spin-orbit driven Berry phenomena <!--[if supportFields]>style='font-size:12.0pt;line-height:200%;font-family:"Times New Roman",serif;
mso-fareast-font-family:SimSun;mso-fareast-theme-font:minor-fareast;mso-ansi-language:
EN-US;mso-fareast-language:ZH-CN;mso-bidi-language:AR-SA'>style='mso-element:field-begin'>style='mso-spacerun:yes'> ADDIN EN.CITE
Chi20229901[2]9901app="EN" db-id="avzpzzze1rf0t0efw27ptptsfpp5t0fd5axw"
timestamp="1657548612">9901name="Journal
Article">17Hang
ChiYunbo OuTim B.
EldredWenpei GaoSohee
KwonJoseph
MurrayMichael
DreyerRobert E.
ButeraHaile
AmbayeJong KeumAlice
T. GreenbergYuhang
LiuMahesh R.
NeupaneGeorge J. de
CosterOwen A.
VailPatrick J. TaylorPatrick
A. FolkesCharles RongGen
YinRoger K.
LakeValeria LauterDon
HeimanJagadeesh S.
MooderaStrain-tunable
Berry curvature in quasi-two-dimensional chromium tellurideNature
CommunicationsNature
CommunicationsNat.
Commun.under review,
arXiv:2207.023182022https://doi.org/10.48550/arXiv.2207.02318style='mso-element:field-separator'>[2]. A unique temperature and strain modulated sign reversal of the anomalous Hall effect has been uncovered for δ = 1/3 (i.e., Cr2Te3), resulting from nontrivial Berry curvature physics. By further tuning δ, a high Curie temperature (TC) exceeding 300 K manifests in ultrathin CrTe films. The versatile interface tunability of Cr1-δTe, hybridized with topological insulator (TI), offers new routes for topological devices. Proximitized with TI, MnTe favorably induces MnBi2Te4/Bi2Te3 natural heterostructure, displaying a TC reaching 180 K that is significantly higher than MnBi2Te4. These discovery-rich magnetic interfaces are key in advancing quantum materials research in the emerging field of topological spintronics.
Chi202210039[1]10039app="EN" db-id="avzpzzze1rf0t0efw27ptptsfpp5t0fd5axw"
timestamp="1663717116">10039name="Journal
Article">17Hang
ChiJagadeesh S.
MooderaProgress
and prospects in the quantum anomalous Hall effectAPL
MaterialsAPL
MaterialsAPL
Mater.09090310920220062https://doi.org/10.1063/5.010098910.1063/5.0100989style='mso-element:field-separator'>[1]. Intertwining topology and low-dimensional magnetism, particularly at intrinsic/hybrid interfaces leveraging disparate quantum features, offers an exciting arena for exploiting novel magnetic phenomena towards disruptive memory, logic and information technologies. The extraordinary correlations among charge, spin, orbital and lattice degrees of freedom, renders magnetic transition metal chalcogenides (TMCs) promising for exotic topological phenomena. We highlight here two typical TMC family of materials, namely, ferromagnetic chromium telluride and antiferromagnetic manganese telluride. Cr1-δTe is an appealing platform for exploring spin-orbit driven Berry phenomena <!--[if supportFields]>style='font-size:12.0pt;line-height:200%;font-family:"Times New Roman",serif;
mso-fareast-font-family:SimSun;mso-fareast-theme-font:minor-fareast;mso-ansi-language:
EN-US;mso-fareast-language:ZH-CN;mso-bidi-language:AR-SA'>style='mso-element:field-begin'>style='mso-spacerun:yes'> ADDIN EN.CITE
Chi20229901[2]9901app="EN" db-id="avzpzzze1rf0t0efw27ptptsfpp5t0fd5axw"
timestamp="1657548612">9901name="Journal
Article">17Hang
ChiYunbo OuTim B.
EldredWenpei GaoSohee
KwonJoseph
MurrayMichael
DreyerRobert E.
ButeraHaile
AmbayeJong KeumAlice
T. GreenbergYuhang
LiuMahesh R.
NeupaneGeorge J. de
CosterOwen A.
VailPatrick J. TaylorPatrick
A. FolkesCharles RongGen
YinRoger K.
LakeValeria LauterDon
HeimanJagadeesh S.
MooderaStrain-tunable
Berry curvature in quasi-two-dimensional chromium tellurideNature
CommunicationsNature
CommunicationsNat.
Commun.under review,
arXiv:2207.023182022https://doi.org/10.48550/arXiv.2207.02318style='mso-element:field-separator'>[2]. A unique temperature and strain modulated sign reversal of the anomalous Hall effect has been uncovered for δ = 1/3 (i.e., Cr2Te3), resulting from nontrivial Berry curvature physics. By further tuning δ, a high Curie temperature (TC) exceeding 300 K manifests in ultrathin CrTe films. The versatile interface tunability of Cr1-δTe, hybridized with topological insulator (TI), offers new routes for topological devices. Proximitized with TI, MnTe favorably induces MnBi2Te4/Bi2Te3 natural heterostructure, displaying a TC reaching 180 K that is significantly higher than MnBi2Te4. These discovery-rich magnetic interfaces are key in advancing quantum materials research in the emerging field of topological spintronics.
–
Publication: [1] "Progress and prospects in the quantum anomalous Hall effect", H. Chi and J. S. Moodera, APL Materials 10, 090903 (2022). <br>[2] "Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride", H. Chi, Y. Ou, T. B. Eldred, W. Gao, S. Kwon, J. Murray, M. Dreyer, R. E. Butera, H. Ambaye, J. Keum, A. T. Greenberg, Y. Liu, M. R. Neupane, G. J. d. Coster, O. A. Vail, P. J. Taylor, P. A. Folkes, C. Rong, G. Yin, R. K. Lake, V. Lauter, D. Heiman, and J. S. Moodera, arXiv:2207.02318 (2022).
Presenters
-
Hang Chi
Massachusetts Institute of Technology
Authors
-
Hang Chi
Massachusetts Institute of Technology