Hilbert space fragmentation in a 2D quantum spin system with subsystem symmetries
ORAL
Abstract
We consider a 2D quantum spin model with ring-exchange interaction that has subsystem symmetries associated to conserved magnetization along rows and columns of a square lattice, which implies the conservation of the global dipole moment. The model is not integrable, but violates the eigenstate thermalization hypothesis through an extensive Hilbert space fragmentation, including an exponential number of inert subsectors with trivial dynamics, arising from kinetic constraints. While subsystem symmetries are quite restrictive for the dynamics, we show that they alone cannot account for such a number of inert states, even with infinite-range interactions. We present a procedure for constructing shielding structures that can separate and disentangle dynamically active regions from each other. Notably, subsystem symmetries allow the thickness of the shields to be dependent only on the interaction range rather than on the size of the active regions, unlike in the case of generic dipole-conserving systems.
–
Publication: https://arxiv.org/abs/2107.09690
Presenters
-
Alexey Khudorozhkov
Boston University
Authors
-
Alexey Khudorozhkov
Boston University
-
Apoorv Tiwari
Paul Scherrer Institute
-
Claudio Chamon
Boston University
-
Titus Neupert
Univ of Zurich