APS Logo

Topological semimetal driven by strong correlations and crystalline symmetry

ORAL

Abstract

Whether and how electron correlations influence electronic topology is an outstanding question. Weyl-Kondo semimetal has become a rare prototype to realize gapless topological states driven by strong correlations [1-4]. Here [5], we advance a general approach, in which strong correlations cooperate with crystalline symmetry to drive gapless topological states. We describe how to apply this materials design principle to discover new electronic topological states in square-net lattices (particularly a Weyl-Kondo nodal-line semimetal), identify three heavy fermion compounds as new candidates, provide first experimental evidence for our prediction in Ce2Au3In5, and discuss how our approach may lead to many more. Finally, using the nonperturbative extended dynamical mean field method, we realize a Weyl-Kondo quantum critical point and describe its topological characteristics [6].



[1] H.-H. Lai, et al., PNAS 115, 93 (2018).



[2] S. E. Grefe et al., PRB101, 075138 (2020).



[3] S. Dzsaber et al., PNAS 118, e2013386118 (2021).



[4] S. Dzsaber et al., PRL 118, 246601 (2017).



[5] L. Chen, C. Setty et al., Nat. Phys. (Sept 2022),10.1038/s41567-022-01743-4



[6] L. Chen, H. Hu et al., unpublished (2022).

Publication: L. Chen, C. Setty et al., Nat. Phys. (Sept 2022),10.1038/s41567-022-01743-4<br>L. Chen, H. Hu et al., unpublished (2022).

Presenters

  • Maia Garcia Vergniory

    Max Planck Institute for Chemical Physics of Solids, Dresden, Germany, Donostia International Physics Center, P. Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain, Donostia International Physics Center and Max Planck Institute for Chemical Physics of Solids, Max Planck Institute for Chemical Physics of Solids, Max Planck Institute CPFS, Donostia International Physics Center

Authors

  • Lei Chen

    Rice University

  • Maia Garcia Vergniory

    Max Planck Institute for Chemical Physics of Solids, Dresden, Germany, Donostia International Physics Center, P. Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain, Donostia International Physics Center and Max Planck Institute for Chemical Physics of Solids, Max Planck Institute for Chemical Physics of Solids, Max Planck Institute CPFS, Donostia International Physics Center

  • Chandan Setty

    Rice University

  • Haoyu Hu

    Donostia International Physics Center

  • Sarah Grefe

    Los Alamos National Laboratory

  • Lukas Fischer

    Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria, Vienna University of Technology

  • Xinlin Yan

    Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria, Merchant logo Vienna University of Technology

  • Gaku Eguchi

    Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria, Institute of Solid State Physics, TU Wien, Vienna University of Technology, Institute of Solid State Physics, Technischen Universita¨t (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.

  • Andrey Prokofiev

    Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria, TU Vienna, Vienna University of Technology

  • Silke Buehler-Paschen

    Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria, TU Vienna, Vienna Univ of Technology, Institute of Solid State Physics, TU Wien, Vienna University of Technology, Institute of Solid State Physics, Technischen Universita¨t (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.

  • Jennifer Cano

    Stony Brook University, Stonybrook University

  • Qimiao Si

    Rice University