Scaling (generative) quantum machine learning models
ORAL · Invited
Abstract
–
Publication: [1] J. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven. Barren plateaus in quantum neural network training landscapes. Nature Communications, 9, 2018.<br>[2] C. O. Marrero, M. Kieferová, and N. Wiebe. Entanglement Induced Barren Plateaus. arXiv preprint - arXiv:2010.15968, 2020.<br>[3] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature Communications, 12(1), 2021.<br>[4] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles. Noise-induced barren plateaus in variational quantum algorithms. Nature Communications,12(1), 2021.<br>[5] C. Zoufal, A. Lucchi, and S. Woerner. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Information, 5(1), 2019.<br>[6] M. Kieferová and N. Wiebe. Tomography and Generative Training with Quantum Boltzmann Machines. Phys. Rev. A, 96, 2017.<br>[7] R. Sweke, J.-P. Seifert, D. Hangleiter, and J. Eisert. On the quantum versus classical learnability of discrete distributions. Quantum, 5, 2021.
Presenters
-
Christa Zoufal
IBM Research - Zurich
Authors
-
Christa Zoufal
IBM Research - Zurich
-
Stefan Woerner
IBM Quantum