Machine Learning for Quantum Matter IV
FOCUS · S62 · ID: 1100953
Presentations
-
Enhancing Variational Monte Carlo with Neural Network Quantum States
ORAL · Invited
–
Publication: S. Czischek, M.S. Moss, M. Radzihovsky, E. Merali, and R.G. Melko, "Data-enhanced variational Monte Carlo simulations for Rydberg atom arrays", PRB 105, 205108 (2022)
Presenters
-
Stefanie Czischek
U of Ottawa, University of Ottawa
Authors
-
Stefanie Czischek
U of Ottawa, University of Ottawa
-
-
Revealing phase diagrams of quantum systems with optimal predictors
ORAL
–
Publication: [1] Julian Arnold and Frank Schäfer, Phys. Rev. X 12, 031044 (2022)
Presenters
-
Julian Arnold
Department of Physics, University of Basel
Authors
-
Julian Arnold
Department of Physics, University of Basel
-
Frank Schäfer
CSAIL, Massachusetts Institute of Technology
-
-
Mitigating semiconductor device variability with machine learning
ORAL
–
Presenters
-
Natalia Ares
University of Oxford
Authors
-
Natalia Ares
University of Oxford
-
-
A convolutional hamming distance metric for unsupervised learning of topological order
ORAL
–
Presenters
-
Gebremedhin A Dagnew
Middlebury College, Perimeter Institute, *Presently at 1QBit
Authors
-
Gebremedhin A Dagnew
Middlebury College, Perimeter Institute, *Presently at 1QBit
-
Owen Myers
.
-
Chris M Herdman
Middlebury College
-
Lauren E Hayward Sierens
Perimeter Inst for Theo Phys
-
-
Machine Learning for Optical Scanning Probe Nanoscopy
ORAL
–
Publication: arXiv:2204.09820
Presenters
-
Suheng Xu
Columbia University
Authors
-
Suheng Xu
Columbia University
-
Xinzhong Chen
Stony Brook University (SUNY)
-
Sara Shabani
Columbia University
-
Yueqi Zhao
UCSD
-
Matthew Fu
Columbia University
-
Andrew Millis
Columbia University, Columbia University, Flatiron Institute
-
Michael M Fogler
University of California, San Diego
-
Abhay N Pasupathy
Brookhaven National Laboratory & Columbia University, Columbia University
-
Mengkun Liu
Stony Brook University (SUNY)
-
Dmitri N Basov
Columbia University, Department of Physics, Columbia University, New York, NY, USA
-
-
Invited Talk: Cristian BonatoBayesian inference for quantum sensing and model learning
ORAL · Invited
–
Publication: (1) Muhammad Junaid Arshad, Christiaan Bekker, Ben Haylock, Krzysztof Skrzypczak, Daniel White, Benjamin Griffiths, Joe Gore, Gavin W. Morley, Patrick Salter, Jason Smith, Inbar Zohar, Amit Finkler, Yoann Altmann, Erik M. Gauger, Cristian Bonato, "Online adaptive estimation of decoherence timescales for a single qubit", arXiv:2210.06103 (2022)<br>(2) Inbar Zohar, Yoav Romach, Muhammad Junaid Arshad, Nir Halay, Niv Drucker, Rainer Stöhr, Andrej Denisenko, Yonatan Cohen, Cristian Bonato, Amit Finkler, " Real-time frequency estimation of a qubit without single-shot-readout ", arXiv:2210.05542 (2022)<br>(3) Valentin Gebhart, Raffaele Santagati, Antonio Andrea Gentile, Erik Gauger, David Craig, Natalia Ares, Leonardo Banchi, Florian Marquardt, Luca Pezze', Cristian Bonato, "Learning Quantum Systems", arXiv:2207.00298 (2022)<br>(4) Eleanor Scerri, Erik M. Gauger, Cristian Bonato, "Extending qubit coherence by adaptive quantum environment learning", New Journal of Physics 22, 035002 (2020)<br>(5) Cristian Bonato, Machiel S. Blok, Hossein T. Dinani, Dominic W. Berry, Matthew L. Markham, Daniel J. Twitchen, Ronald Hanson, "Optimized quantum sensing with a single electron spin using real-time adaptive measurements", Nature Nanotechnology 11, 247-252 (2016)
Presenters
-
Cristian Bonato
Heriot-Watt University, Bonato, Heriot-Watt University, Edinburgh
Authors
-
Cristian Bonato
Heriot-Watt University, Bonato, Heriot-Watt University, Edinburgh
-
Muhammad Junaid Arshad
Heriot-Watt University
-
Stewart Wallace
Heriot-Watt University
-
Christiaan Bekker
Heriot-Watt University
-
Ben Haylock
Heriot-Watt University
-
Yoann Altmann
Heriot-Watt University
-
Erik Gauger
Heriot-Watt University
-
-
Towards improving generalization of a neural network by interpretation for topological phases of matter
ORAL
–
Presenters
-
Kacper J Cybinski
University of Warsaw
Authors
-
Kacper J Cybinski
University of Warsaw
-
Marcin Plodzien
ICFO-The Institute of Photonic Sciences
-
Michal Tomza
University of Warsaw
-
Maciej A Lewenstein
ICFO-The Institute of Photonic Sciences
-
Alexandre Dauphin
ICFO-The Institute of Photonic Sciences
-
Anna Dawid
Flatiron Institute
-
-
Learning by confusion: detecting phase transitions from Quantum Monte Carlo data
ORAL
–
Presenters
-
Owen Bradley
University of California, Davis
Authors
-
Owen Bradley
University of California, Davis
-
Max Cohen
University of California, Davis
-
Richard T Scalettar
University of California, Davis
-
-
Digital Discovery of a Scientific Concept at the Core of Experimental Quantum Optics
ORAL
–
Publication: https://doi.org/10.48550/arXiv.2210.09980<br>https://doi.org/10.48550/arXiv.2210.09980
Presenters
-
Sören Arlt
Max Planck Inst for Sci Light, Max Planck Institute for the Science of Light
Authors
-
Sören Arlt
Max Planck Inst for Sci Light, Max Planck Institute for the Science of Light
-
Mario Krenn
Max Planck Institute for the Science of Light
-
Carlos Ruiz Gonzalez
Max Planck Institute for the Science of Light
-
Mario Krenn
Max Planck Institute for the Science of Light
-
-
From 4D-STEM data to interpretable physics — an unsupervised learning approach to the charge order physics in TaS<sub>2</sub>
ORAL
–
Publication: [1] J. Venderley et al., Harnessing Interpretable and Unsupervised Machine Learning to Address Big Data from Modern X-Ray Diffraction, Proceedings of the National Academy of Sciences 119, e2109665119 (2022).
Presenters
-
Haining Pan
Cornell University
Authors
-
Haining Pan
Cornell University
-
Krishnanand M Mallayya
Cornell University
-
James L Hart
Cornell University
-
Judy J Cha
Cornell University
-
Eun-Ah Kim
Cornell University
-