APS Logo

Infrared Plasmons Propagate through a Hyperbolic Nodal Metal

ORAL

Abstract

Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nano-scale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. Yet this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe [1]. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal.



[1] Y. Shao, A. J. Sternbach, B. S. Y. Kim, A. A. Rikhter, X. Xu, U. De Giovannini, R. Jing, S. H. Chae, Z. Sun, S. H. Lee, Y. Zhu, Z. Mao, J. Hone, R. Queiroz, A. J. Millis, P. J. Schuck, A. Rubio, M. M. Fogler, D. N. Basov, "Infrared Plasmons Propagate through a Hyperbolic Nodal Metal", Science Advance 8, eadd6169 (2022)

Publication: Y. Shao, A. J. Sternbach, B. S. Y. Kim, A. A. Rikhter, X. Xu, U. De Giovannini, R. Jing, S. H. Chae, Z. Sun, S. H. Lee, Y. Zhu, Z. Mao, J. Hone, R. Queiroz, A. J. Millis, P. J. Schuck, A. Rubio, M. M. Fogler, D. N. Basov, "Infrared Plasmons Propagate through a Hyperbolic Nodal Metal", Science Advance 8, eadd6169 (2022)

Presenters

  • Yinming Shao

    Columbia University, Department of Physics, Columbia University, New York, NY, USA

Authors

  • Yinming Shao

    Columbia University, Department of Physics, Columbia University, New York, NY, USA

  • Aaron Sternbach

    Columbia University

  • Brian S Kim

    Columbia University

  • Andrey A Rikhter

    UC San Diego

  • Xinyi Xu

    Columbia Universtiy, Columbia University, Department of Mechanical Engineering, Columbia University, New York, NY, USA

  • Umberto De Giovannini

    Max Planck Institute for the Structure and Dynamics of Matter

  • Ran Jing

    Columbia University

  • Sang Hoon Chae

    Columbia University

  • Zhiyuan Sun

    Tsinghua University, Harvard University

  • Seng Huat Lee

    Pennsylvania State University

  • Yanglin Zhu

    Pennsylvania State University

  • Zhiqiang Mao

    Pennsylvania State University

  • James C Hone

    Columbia University

  • Raquel Queiroz

    Weizmann Institute of Science, Columbia University

  • Andrew Millis

    Columbia University, Columbia University, Flatiron Institute

  • P J Schuck

    Columbia University, Department of Mechanical Engineering, Columbia University, New York, NY, USA

  • Angel Rubio

    Max Planck Institute for Structure and Dynamics of Matter, Max Planck Institute for the Structure &, Max Planck Institute for the Structure & Dynamics of Matter, Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany, Max Planck Institute for the Structure &Dynamics of Matter; Center for Computational Quantum Physics (CCQ), Flatiron Institute, 1. Max Planck Institute for the Structure and Dynamics of Matter 2. Center for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York NY

  • Michael M Fogler

    University of California, San Diego

  • Dmitri N Basov

    Columbia University, Department of Physics, Columbia University, New York, NY, USA