APS Logo

Rare-earth Dependence of the Superfluid Density in Nickelates

ORAL

Abstract

Infinite-layer nickelates present a new family of strongly correlated superconductors [1-3]. Some key open questions include the superconducting gap symmetry and their potential dependence on the rare-earth elements [4,5]. Here we present our characterization of the superfluid density in (R,Sr)NiO2 (R = La, Pr, Nd) utilizing the mutual inductance measurement technique [5]. For La and Pr-nickelates, the superfluid density shows a quadratic temperature dependence, indicating nodal superconducting gap structure in the presence of disorder. Nd-nickelate instead exhibits complex low-temperature behavior due to the magnetic contribution of the Nd3+ 4f moments [6]. These results are consistent with the unconventional nature of superconductivity in the nickelates.

[1] D. Li et al., Nature 572, 624 (2019).

[2] Y. Nomura and R. Arita, Rep. Prog. Phys. 85, 052501 (2022).

[3] A. S. Botana, F. Bernardini, and A. Cano, J. Exp. Theor. Phys. 132, 618 (2021).

[4] L. E. Chow et al., Preprint at https://arxiv.org/abs/2201.10038 (2022).

[5] S. P. Harvey et al., Preprint at https://arxiv.org/abs/2201.12971 (2022).

[6] B. Y. Wang et al., Preprint at https://arxiv.org/abs/2205.15355 (2022).

Presenters

  • Bai Yang Wang

    Stanford University, Stanford University, SLAC National Accelerator Laboratory

Authors

  • Bai Yang Wang

    Stanford University, Stanford University, SLAC National Accelerator Laboratory

  • Shannon Harvey

    Stanford University

  • Jennifer Fowlie

    Stanford University, Stanford University, SLAC National Accelerator Laboratory

  • Motoki Osada

    Stanford Univ

  • Kyuho Lee

    Stanford University, Stanford University, SLAC National Accelerator Laboratory

  • Yonghun Lee

    Stanford University, Stanford University, SLAC National Accelerator Laboratory

  • Danfeng Li

    Stanford University, City University of Hong Kong

  • Harold Hwang

    Stanford Univ, Stanford University