APS Logo

Quantifying the performance of approximate teleportation and quantum error correction via symmetric two-PPT-extendibility

ORAL

Abstract

The ideal realization of quantum teleportation relies on having access to a maximally entangled state; however, in practice, such an ideal state is typically not available and one can instead only realize an approximate teleportation. With this in mind, we present a method to quantify the performance of approximate teleportation when using an arbitrary resource state. More specifically, after framing the task of approximate teleportation as an optimization of a simulation error over one-way local operations and classical communication (LOCC) channels, we establish a semi-definite relaxation of this optimization task by instead optimizing over the larger set of two-PPT-extendible channels. The main analytical calculations in our paper consist of exploiting the unitary covariance symmetry of the identity channel to establish a significant reduction of the computational cost of this latter optimization. Next, by exploiting known connections between approximate teleportation and quantum error correction, we also apply these concepts to establish bounds on the performance of approximate quantum error correction over a given quantum channel. Finally, we evaluate our bounds for various examples of resource states and channels.

Publication: Arxiv preprint : https://arxiv.org/abs/2207.06931

Presenters

  • Vishal Singh

    Cornell University

Authors

  • Vishal Singh

    Cornell University

  • Mark M Wilde

    Cornell University, LSU

  • Tharon Holdsworth

    University of Massachusetts Boston