APS Logo

Parallel spin-momentum locking in a chiral topological semimetal

ORAL

Abstract

We present experimental evidence for parallel spin-momentum locking of a multifold fermion in the chiral topological semimetal PtGa. While orthogonal spin-momentum locking, such as Rashba spin-orbit coupling has been studied for decades and inspired a vast number of applications, its natural counterpart, the purely parallel spin-momentum locking over a full Fermi surface, has so far remained elusive in experiments. Recently, chiral topological semimetals that host single- and multifold band crossings have been predicted to realize such parallel locking [1-4]. We use spin- and angle-resolved photoelectron spectroscopy to probe the spin-texture of the topological Fermi-arc surface states in PtGa and find that the spin points orthogonal to the Fermi surface contour for momenta close to the projection of the bulk multifold fermion, which is consistent with parallel spin-momentum locking of the latter [5].

[1] G. Chang, et al., Nat. Mater. 17, 978 (2018).

[2] C. Mera Acosta, et al., Phys. Rev. B 104, 104408 (2021)

[3] W. Tan, et al., Adv Funct Materials, 2208023 (2022).

[4] M. Lin, et. al, arxiv:2204.10113 [cond-mat] (2022).

[5] J. A. Krieger, et. al, arxiv: 2210.08221 [cond-mat] (2022)

Publication: J. A. Krieger, et. al, arxiv: 2210.08221 [cond-mat] (2022); (submitted)

Presenters

  • Jonas A Krieger

    Max Planck Institute of Microstructure Physics

Authors

  • Jonas A Krieger

    Max Planck Institute of Microstructure Physics

  • Samuel Stolz

    University of California, Berkeley

  • Iñigo Robredo

    Max Planck Institute CPFS

  • Kaustuv Manna

    Max Planck Institute for Chemical Physics of Solids

  • Emily C McFarlane

    Max Planck Institute of Microstructure Physics

  • Mihir Date

    Max Planck Institute of Microstructure Physics

  • Eduardo B Bonini-Guedes

    Swiss Light Source, Paul Scherrer Insitute, Paul Scherrer Institut

  • J. Hugo Dil

    Swiss Light Source, Paul Scherrer Insitute

  • Chandra Shekhar

    Max Planck Institute for Chemical Physics of Solids

  • Qun Yang

    Max Planck Institute for Chemical Physics of Solids, Max Planck Institute for Chemical Physics of Solid

  • Mao Lin

    Amazon Web Services, University of Illinois at Urbana-Champaign

  • Vladimir N Strocov

    Swiss Light Source, Paul Scherrer Institut, Swiss Light Source, Paul Scherrer Insitute, Swiss Light Source, Paul Scherrer Institut

  • Banabir Pal

    Max Planck Insitute of Microstructure Physics

  • Matthew D Watson

    Diamond Light Source

  • Timur Kim

    Diamond Light Source

  • Cephise Cacho

    Diamond Light Source

  • Federico Mazzola

    CNR-IOM, Trieste

  • Jun Fujii

    CNR-IOM, Trieste, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy

  • Ivana Vobornik

    CNR-IOM, Trieste, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy

  • Stuart Parkin

    Max Planck Inst Microstructure, Max Planck Institute of Microstructure Physics, Max Planck Institute of Microstructure Physics, Halle 06120, Germany

  • Barry Bradlyn

    University of Illinois at Urbana-Champai, University of Illinois at Urbana-Champaign

  • Claudia Felser

    Max Planck Institute for Chemical Physic, Max Planck Institute for Chemical Physics of Solids

  • Maia Garcia Vergniory

    Max Planck Institute for Chemical Physics of Solids, Dresden, Germany, Donostia International Physics Center, P. Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain, Donostia International Physics Center and Max Planck Institute for Chemical Physics of Solids, Max Planck Institute for Chemical Physics of Solids, Max Planck Institute CPFS, Donostia International Physics Center

  • Niels B Schröter

    Max Planck Institute of Microstructure Physics, Paul Scherrer Institut