APS Logo

Loss and decoherence at the quantum Hall - superconductor interface

ORAL

Abstract

High quality type-II superconducting contacts have recently been developed to a variety of 2D systems, allowing one to explore the superconducting proximity in the quantum Hall (QH) regime. Inducing superconducting correlations into a chiral system has long been viewed as a route for creating exotic topological states and excitations. However, it appears that before these exciting predictions could be realized, one should develop a better understanding of the limitations imposed by the physics of real materials. Here, we perform a systematic study of Andreev conversion at the interface between a superconductor and graphene in the QH regime. We find that the probability of Andreev conversion of electrons to holes follows an unexpected but clear trend: the dependencies on temperature and magnetic field are nearly decoupled. We discuss these trends and the role of the superconducting vortices, whose normal cores could both absorb and dephase the individual electrons in a QH edge. Our study may pave the road to engineering future generation of hybrid devices for exploiting superconductivity proximity in chiral channels.

Presenters

  • Lingfei Zhao

    Duke University

Authors

  • Lingfei Zhao

    Duke University

  • Zubair Iftikhar

    Duke University

  • Trevyn Larson

    Duke University

  • Ethan G Arnault

    MIT Research Laboratory of Electronics, Duke University, Massachusetts Institute of Technology

  • Kenji Watanabe

    National Institute for Materials Science, Research Center for Functional Materials, National Institute of Materials Science, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-044, Japan, NIMS, Research Center for Functional Materials, National Institute for Materials Science, National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan, NIMS Japan

  • Takashi Taniguchi

    National Institute for Materials Science, Kyoto Univ, International Center for Materials Nanoarchitectonics, National Institute of Materials Science, Kyoto University, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-044, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science, Japan, National Institute For Materials Science, NIMS, National Institute for Material Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, NIMS Japan

  • Francois Amet

    Appalachian State University

  • Gleb Finkelstein

    Duke University