APS Logo

Quantum control of interlayer excitons through engineered confinement in MoSe<sub>2</sub>/WSe<sub>2</sub> heterostructures

ORAL

Abstract

The pursuit of scalable quantum technologies has led to an increasing demand for better control of quantum properties of materials. An exciton, a bound electron-hole pair, constitutes an atomic-like solid-state system which is optically accessible. In two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), electron-hole pairs have particularly large binding energies, such that the excitons are stable even at room temperature. However, as the excitons are charge neutral, traditional depletion traps as employed for 2D electron gases will only provide weak confinement. In this presentation, we focus on MoSe2/WSe2 heterostructures where the bound electrons and holes reside in different layers. As a result of this separation, using the control of thickness of hBN insertion layers, the interlayer excitons are long-lived and have a large permanent dipole moment. Modulating the out-of-plane dipole through the distance of the electron and holes and through an applied electric field, the interlayer excitons can be controlled on a quantum level. The deterministic creation and control over interlayer exciton systems will open up new avenues for quantum applications.

Presenters

  • Nadine Leisgang

    Harvard University

Authors

  • Nadine Leisgang

    Harvard University

  • Andres M Mier Valdivia

    Harvard University

  • Grace Chen

    Harvard University

  • Ryan J Gelly

    Harvard University

  • Kenji Watanabe

    National Institute for Materials Science, Research Center for Functional Materials, National Institute of Materials Science, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-044, Japan, NIMS, Research Center for Functional Materials, National Institute for Materials Science, National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan, NIMS Japan

  • Takashi Taniguchi

    National Institute for Materials Science, Kyoto Univ, International Center for Materials Nanoarchitectonics, National Institute of Materials Science, Kyoto University, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-044, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science, Japan, National Institute For Materials Science, NIMS, National Institute for Material Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, NIMS Japan

  • Hongkun Park

    Harvard University

  • Philip Kim

    Harvard University