APS Logo

Non-reciprocal Pauli Spin Blockade in a Silicon Double Quantum Dot

ORAL

Abstract

Spin qubits in gate-defined silicon quantum dots are receiving increased attention thanks to their potential for large-scale quantum computing. Readout of such spin qubits is done most accurately and scalably via Pauli spin blockade (PSB), however various mechanisms may lift PSB and complicate readout. In this work, we present an experimental observation of a new, highly prevalent PSB-lifting mechanism in a silicon double quantum dot due to incoherent tunnelling between different spin manifolds. Through dispersively-detected magnetospectroscopy of the double quantum dot in 16 charge configurations, we find the mechanism to be energy-level selective and non-reciprocal for neighbouring charge configurations. Additionally, using input-output theory we report a large coupling of different electron spin manifolds of 7.90 μeV, the largest reported to date, indicating an enhanced spin-orbit coupling which may enable all-electrical qubit control.

Publication: T. Lundberg et al., arXiv:2110.09842 (2021)

Presenters

  • David Ibberson

    Quantum Motion Technologies Ltd., Quantum Motion

Authors

  • David Ibberson

    Quantum Motion Technologies Ltd., Quantum Motion

  • Theodor Lundberg

    Univ of Cambridge

  • Jing Li

    Universite Grenoble Alpes

  • Louis Hutin

    CEA-Leti, Universite Grenoble Alpes

  • Jose Carlos Abadillo-Uriel

    CEA Grenoble

  • Michele Filippone

    CEA Grenoble

  • Benoit Bertrand

    CEA-Leti, Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France, CEA LETI, Univ. Grenoble Alpes, CEA, Leti, Grenoble, France

  • Andreas Nunnenkamp

    University of Vienna

  • Chang-Min Lee

    University of Maryland, University of Cambridge

  • Nadia Stelmashenko

    University of Cambridge

  • Jason Robinson

    University of Cambridge

  • Maud Vinet

    CEA-Leti, Univ. Grenoble Alpes, CEA, Leti, Grenoble, France

  • Lisa Ibberson

    Hitachi Cambridge Laboratory

  • Yann-Michel Niquet

    CEA Grenoble, Univ. Grenoble Alpes, CEA, IRIG, 38000 Grenoble, France

  • Fernando Gonzalez-Zalba

    Quantum Motion, Quantum Motion Technologies Ltd., Quantum Motion Technologies