Broadband parametric amplification for multiplexed SiMOS spin qubit readout
ORAL
Abstract
Gate-based radio-frequency reflectometry embodies a readout method that doesn't need additional elements to be built, outside of the transistor gates themselves. In addition, superconducting parametric amplification gives a way to significantly enhance the readout signal-to-noise ratio by reducing the noise below typical HEMT amplifiers, of around 4K noise temperature [3].
In this work, we demonstrate a 3GHz gate-based reflectometry readout of electron charge states in SiMOS multi-gate devices, enhanced with a travelling-wave superconducting parametric amplifier (TWPA) [4]. The broad 2GHz bandwidth combined with close to 12dB gain of the amplifier offers time-multiplexing interdot signal readout near the standard quantum limit of noise. In addition, the single-junction nature of the aluminum superconducting amplifier chain renders it insensitive to external magnetic field at typical spin qubit working values, up until we reach Al critical field at the position of the amplifier.
[2] Maurand, R., Jehl, X., Kotekar-Patil, D., Corna, A., Bohuslavskyi, H., Laviéville, R., ... & De Franceschi, S. (2016). A CMOS silicon spin qubit. Nature communications, 7(1), 1-6.
[3] Vigneau, F., Fedele, F., Chatterjee, A., Reilly, D., Kuemmeth, F., Gonzalez-Zalba, F., ... & Ares, N. (2022). Probing quantum devices with radio-frequency reflectometry. arXiv preprint arXiv:2202.10516.
[4] Planat, L., Ranadive, A., Dassonneville, R., Martínez, J. P., Léger, S., Naud, C., ... & Roch, N. (2020). Photonic-crystal Josephson traveling-wave parametric amplifier. Physical Review X, 10(2), 021021.
–
Publication: Broadband parametric amplification for multiplexed SiMOS spin qubit readout. Elhomsy V., Niegemann D. J., et al., in preparation.
Presenters
-
Victor Elhomsy
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Authors
-
Victor Elhomsy
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
-
David J Niegemann
Institut Neel, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
-
Luca Planat
Silent Waves
-
Emmanuel Chanrion
Institut Neel (CNRS), Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France
-
Martin Nurizzo
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
-
Baptiste Jadot
Univ. Grenoble Alpes, CEA, Leti, Grenoble, France
-
Vivien Thiney
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38402 Grenoble, France, Univ. Grenoble Alpes, CEA, Leti, Grenoble, France
-
Renan Lethiecq
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38402 Grenoble, France, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
-
Bernhard Klemt
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
-
Matthieu C Dartiailh
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
-
Pierre-André A Mortemousque
CEA-Leti, Univ. Grenoble Alpes, CEA, Leti, Grenoble, France
-
Benoit Bertrand
CEA-Leti, Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France, CEA LETI, Univ. Grenoble Alpes, CEA, Leti, Grenoble, France
-
Heimanu Niebojewski
CEA-Leti, Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France, Univ. Grenoble Alpes, CEA, Leti, Grenoble, France
-
Maud Vinet
CEA-Leti, Univ. Grenoble Alpes, CEA, Leti, Grenoble, France
-
Nicolas Roch
Institut Neel, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
-
Tristan Meunier
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
-
Matias Urdampilleta
CNRS Institut Néel, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38402 Grenoble, France, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France