Inducing Chirality in Single Photon Quantum Emitter Photoluminescence via the Chiral Induced Spin Selectivity Effect
ORAL
Abstract
Chiral quantum emitters or non-reciprocal single photon devices would play a significant role in future quantum communication-based infrastructure. [1,2] To date, the realization of such quantum emitters has been difficult as they generally require complex and bulky experimental infrastructures such as high magnetic/electric fields and cryogenic-temperatures. The Chiral-Induced Spin Selectivity (CISS) effect is one well-known physical phenomena known to enable control over electronic spins via the asymmetric transport of electronic spins in chiral organic and inorganic systems. [3,4] Our group has explored the utilization of CISS to manipulate the chirality of photoluminescence (PL) of single quantum emitters. Cadmium selenide-quantum dots are immobilized on a chiral surface prepared using electrodeposition of aniline. We observe both the inducement a significant degree of circular polarized PL emission and a magnetization-dependent PL quenching by using a ferromagnet valve in the chiral substrate. These observations illustrate the potential of a CISS-based mechanisms for realizing chiral single photon emission sources in solid-state material devices.
Reference:
[1] H. J. Kimble, The Quantum Internet, Nature 453, 7198 (2008).
[2] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, Chiral Quantum Optics, Nature 541, 7638 (2017).
[3] R. Naaman, Y. Paltiel, and D. H. Waldeck, Chiral Molecules and the Electron Spin, Nature Reviews Chemistry 3, 250 (2019).
[4] S.-H. Yang, R. Naaman, Y. Paltiel, and S. S. P. Parkin, Chiral Spintronics, Nat Rev Phys 3, 5 (2021).
–
Presenters
-
Suryakant Mishra
Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Authors
-
Suryakant Mishra
Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
-
Eric G Bowes
Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
-
Tai C Trinh
Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
-
Jennifer A Hollingsworth
Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
-
Han Htoon
Los Alamos Natl Lab, Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, Los Alamos National Laboratory
-
Andrew Jones
Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA