Implementation of a Josephson Phase Slip Qubit
ORAL
Abstract
Analog quantum simulation is gaining traction as a path to studying relevant many-body quantum interactions. Of the many qubit modalities, flux qubits in superconducting circuits are well suited to simulate the quantum transverse field Ising model. However, this architecture has been limited to modeling Hamiltonians with only a ZZ coupling between qubits. Here we discuss a novel type of superconducting qubit, the Josephson phase slip qubit (JPSQ), a vector spin-1/2 system designed to achieve the static emulation of the full Heisenberg Hamiltonian. We present our implementation of a JPSQ and characterize its tuning with both flux and charge. The JPSQ is explicitly designed to realize a non-stoquastic, XX coupling in the absence of local qubit fields, thus overcoming an inherent limitation of all existing flux qubit based systems.
This material is based upon work supported by the Defense Advanced Research Projects Agency and the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering and Defense Advanced Research Projects Agency.
–
Presenters
-
Mallika T Randeria
MIT Lincoln Laboratory, Lincoln Laboratory, MIT
Authors
-
Mallika T Randeria
MIT Lincoln Laboratory, Lincoln Laboratory, MIT
-
Steven M Disseler
MIT Lincoln Lab
-
Cyrus F Hirjibehedin
MIT Lincoln Lab
-
Thomas M Hazard
MIT Lincoln Lab, MIT Lincoln Laboratory
-
Steven J Weber
MIT Lincoln Lab
-
Rabindra Das
Massachusetts Institute of Technology MIT, MIT Lincoln Lab
-
David K Kim
MIT Lincoln Lab, MIT Lincoln Laboratory
-
Alexander Melville
MIT Lincoln Laboratory
-
Bethany M Niedzielski
MIT Lincoln Lab, MIT Lincoln Laboratory
-
Jonilyn L Yoder
MIT Lincoln Lab, MIT Lincoln Laboratory
-
Andrew J Kerman
MIT Lincoln Lab