Tailoring Dirac states in a correlated system by chemical substitution
ORAL
Abstract
By means of Angle-Resolved Photo-Emission Spectroscopy (ARPES) experiments and ab initio DFT calculations, we prove that it is possible to move and reshape massive Dirac nodal lines in reciprocal space in the correlated system BaCo1−xNixS2 by Co/Ni substitution [2]. We show that the underlying band-inversion mechanism is driven by a large d−p hybridization and electronic correlation combined with the nonsymmorphic symmetry of the crystal. Remarkably, the doping x via chemical substitution also controls the electronic phase diagram which features correlated d-electron Dirac states across its metallic phase.
Our results suggest that BaCo1−xNixS2 is a model system to effectively tailor correlated Dirac states. More generally, we show that the two standard features of correlated systems -that is, the hybrid d−p bands and the charge-transfer gap, constitute a promising playground to engineer Dirac and topological materials using chemical substitution or other macroscopic control parameters. Our present approach can be applied to a wide class of materials described by the d−p effective Hamiltonian.
[1] N. P. Armitage, E. J. Mele, A. Vishwanath, Rev. Mod. Phys. 90, 15001 (2018)
[2] N. Nilforoushan et al., PNAS 118, e2108617118 (2021)
–
Publication: 1- N. Nilforoushan et al., "Moving Dirac nodes by chemical substitution", Proceedings of the National Academy of Sciences,118, e2108617118 (2021)<br>2- N. Nilforoushan et al., "Photoinduced renormalization and electronic screening of quasi-two-dimensional Dirac states in BaNiS2", Physical Review Research, 2, 043397 (2020)<br>3- N. Bittner et al., "Photoinduced Dirac-cone flattening in BaNiS2", Physical Review B, 104, 115138 (2021)<br>4- D. Santos-Cottin et al., "Optical conductivity signatures of open Dirac nodal lines", Physical Review B, 104, 20, (2021)
Presenters
-
Niloufar Nilforoushan
a) Laboratoire de Physique des Solides, Université Paris-Saclay, Orsay, France. b) Laboratoire de Physique de l'Ecole Normale Supérieure, Université de Paris, France.
Authors
-
Niloufar Nilforoushan
a) Laboratoire de Physique des Solides, Université Paris-Saclay, Orsay, France. b) Laboratoire de Physique de l'Ecole Normale Supérieure, Université de Paris, France.
-
Michele Casula
Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Museum National d'Histoire Naturelle, Paris, France, Sorbonne University, IMPMC, UMR 7590 CNRS - Sorbonne Université Paris
-
Adriano Amaricci
CNR Istituto Officina dei Materiali, CNR Istituto Officina dei Materiali, Trieste, Italy
-
Marco Caputo
Elettra Sincrotrone Trieste, Area Science Park, Trieste, Italy
-
Evangelos Papalazarou
Laboratoire de Physique des Solides, Université Paris-Saclay, France
-
Luca Perfetti
Laboratoire de Physique des Solides, Université Paris-Saclay, France
-
Ivana Vobornik
CNR-IOM, Trieste, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
-
Pranab Das Kumar
Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore
-
Jun Fujii
CNR-IOM, Trieste, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
-
David Santos-Cottin
Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Museum National d'Histoire Naturelle, Paris, France
-
Yannick Klein
Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Museum National d'Histoire Naturelle, Paris, France
-
Michele Fabrizio
International School for Advanced Studies (SISSA), Trieste, Italy
-
Andrea Gauzzi
Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Museum National d'Histoire Naturelle, Paris, France
-
Marino Marsi
Laboratoire de Physique des Solides, Université Paris-Saclay, Orsay, France