Non-perturbative constraints from symmetry and chirality on Majorana zero modes and defect quantum numbers in (2+1)D
ORAL
Abstract
In (1+1)D topological phases, unpaired Majorana zero modes (MZMs) can arise only if the internal symmetry group Gf of the ground state splits as Gf = Gb × Z2f, where Z2f is generated by fermion parity, (-1)F. In contrast, (2+1)D topological superconductors (TSC) can host unpaired MZMs at defects even when Gf is not of the form Gb × Z2f. In this paper we study how Gf together with the chiral central charge c- strongly constrain the existence of unpaired MZMs and the quantum numbers of symmetry defects. Our results utilize a recent algebraic characterization of (2+1)D invertible fermionic topological states, which provides a non-perturbative approach based on topological quantum field theory, beyond free fermions. We study physically relevant groups such as U(1)f × H,SU(2)f × H, U(2)f × H, generic Abelian groups, as well as more general compact Lie groups, antiunitary symmetries and crystalline symmetries. We present an algebraic formula for the fermionic crystalline equivalence principle, which gives an equivalence between states with crystalline and internal symmetries. In light of our theory, we discuss several previously proposed realizations of unpaired MZMs in TSC materials such as Sr2RuO4, transition metal dichalcogenides and iron superconductors, in which crystalline symmetries are often important; in some cases we present additional predictions for the properties of these models.
–
Publication: arXiv:2210.02452
Presenters
-
Maissam Barkeshli
Joint Quantum Institute, NIST/University of Maryland, College Park, University of Maryland College Park, University of Maryland, College Park
Authors
-
Naren Manjunath
University of Maryland College Park
-
Vladimir Calvera
Stanford University
-
Maissam Barkeshli
Joint Quantum Institute, NIST/University of Maryland, College Park, University of Maryland College Park, University of Maryland, College Park