APS Logo

On training variational quantum circuits

ORAL

Abstract

We consider certain training phenomena including under versus over parameterisation and noise effects in variational quantum circuits. Particularly we contrast abrupt training transitions, reachability deficits, parameter concentrations and parameter saturations.

Publication: Quantum machine learning<br>J Biamonte, P Wittek, N Pancotti, P Rebentrost, N Wiebe, and S Lloyd <br>Nature 549, 195–202 (2017) 10.1038/nature23474<br><br>Ion-native variational ansatz for quantum approximate optimization<br>D Rabinovich, S Adhikary, E Campos, V Akshay, E Anikin, R Sengupta, O Lakhmanskaya, K Lakhmanskiy, and J Biamonte<br>Physical Review A 106, 032418 (2022) 10.1103/PhysRevA.106.032418<br><br>Progress towards analytically optimal angles in quantum approximate optimisation<br>D Rabinovich, R Sengupta, E Campos, V Akshay, and J Biamonte <br>Mathematics 10, 2601 (2022) 10.3390/math10152601<br><br>Reachability deficits implicit in quantum approximate optimization of graph problems<br>V Akshay, H Philathong, I Zacharov, and J Biamonte <br>Quantum 5, 532 (2021) 10.22331/q-2021-08-30-532<br><br>Parameter concentrations in quantum approximate optimization<br>V Akshay, D Rabinovich, E Campos, and J Biamonte <br>(Letter) Physical Review A 104, L010401 (2021) 10.1103/PhysRevA.104.L010401<br><br>Universal variational quantum computation<br>J Biamonte<br>(Letter) Physical Review A 103, L030401 (2021) 10.1103/PhysRevA.103.L030401<br><br>Quantum machine learning tensor network states<br>A Kardashin, A Uvarov, and J Biamonte <br>Frontiers in Physics 8, 586374 (2021) 10.3389/fphy.2020.586374<br><br>Variational simulation of Schwinger's Hamiltonian with polarization qubits<br>O Borzenkova, G Struchalin, A Kardashin, V Krasnikov, N Skryabin, S Straupe, S Kulik, and J Biamonte <br>Applied Physics Letters 118, 144002 (2021) 10.1063/5.0043322<br><br>Abrupt transitions in variational quantum circuit training<br>E Campos, A Nasrallah, and J Biamonte <br>Physical Review A 103, 032607 (2021) 10.1103/PhysRevA.103.032607<br><br>Training saturation in layerwise quantum approximate optimisation<br>E Campos, D Rabinovich, V Akshay, and J Biamonte<br>(Letter) Physical Review A 104, L030401 (2021) 10.1103/PhysRevA.104.L030401<br><br>On barren plateaus and cost function locality in variational quantum algorithms<br>A Uvarov and J Biamonte<br>Journal of Physics A: Mathematical and Theoretical 54, 245–301 (2021) 10.1088/1751-8121/abfac7<br><br>Reachability deficits in quantum approximate optimization<br>V Akshay, H Philathong, M Morales, and J Biamonte <br>Physical Review Letters 124, 090504 (2020) 10.1103/PhysRevLett.124.090504<br><br>On the universality of the quantum approximate optimization algorithm<br>M Morales, J Biamonte, and Z Zimborás <br>Quantum Information Processing 19, 291 (2020) 10.1007/s11128-020-02748-9<br><br>Variational quantum eigensolver for frustrated quantum systems<br>A Uvarov, J Biamonte, and D Yudin <br>Physical Review B 102, 075104 (2020) 10.1103/PhysRevB.102.075104<br><br>Machine learning phase transitions with a quantum processor<br>A Uvarov, A Kardashin, and J Biamonte <br>Physical Review A 102, 012415 (2020) 10.1103/PhysRevA.102.012415<br><br>Variational learning of Grover's quantum search algorithm<br>M Morales, T Tlyachev, and J Biamonte <br>Physical Review A 98, 062333 (2018) 10.1103/PhysRevA.98.062333

Presenters

  • Jacob Biamonte

    Beijing Institute of Mathematical Sciences and Applications

Authors

  • Jacob Biamonte

    Beijing Institute of Mathematical Sciences and Applications