APS Logo

Molecule-based magnetic thin film for spin-thermoelectric energy conversion

ORAL

Abstract

Inseon Oh, Jungmin Park, Daeseong Choe, Junhyeon Jo, Hyeonjung Jeong, Mi-Jin Jin, and Jung-Woo Yoo

Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Korea

Spin thermoelectrics, an emerging thermoelectric technology, offers energy harvesting from waste heat with potential advantages of scalability and energy conversion efficiency, thanks to orthogonal paths for heat and charge flow. However, magnetic insulators previously used for spin thermoelectrics pose challenges for scale-up due to high temperature processing and difficulty in large-area deposition. In this talk, I will present a molecule-based magnetic film for spin thermoelectric applications because it entails versatile synthetic routes in addition to weak spin-lattice interaction and low thermal conductivity [1]. Thin films of CrII[CrIII(CN)6], Prussian blue analogue, electrochemically deposited on Cr electrodes at room temperature show effective spin thermoelectricity. Moreover, the ferromagnetic resonance studies exhibit an extremely low Gilbert damping constant ~ (2.4 ± 0.67) × 10−4, indicating low loss of heat-generated magnons. The demonstrated STE applications of a new class of magnet will pave the way for versatile recycling of ubiquitous waste heat.



[1] A scalable molecule-based magnetic thin film for spin-thermoelectric energy conversion, Nat. Comm. 12, 1057 (2021)

Publication: A scalable molecule-based magnetic thin film for spin-thermoelectric energy conversion, Nat. Comm. 12, 1057 (2021)

Presenters

  • Jung-Woo Yoo

    UNIST

Authors

  • Jung-Woo Yoo

    UNIST