APS Logo

An all-chemistries comprehensive verification of all-electron and pseudopotential DFT codes via universal common workflows

ORAL

Abstract

In the past decades many DFT methods and codes have been developed, but only in 2016 their precision was first systematically assessed [1] on elemental compounds. We now define a greatly expanded protocol to test precision and transferability across all chemistries. For each element (Z=1-96) we characterize 10 prototypical compounds (4 unaries and 6 oxides, spanning a wide range of coordination numbers and oxidation states). The first outcome is a reference dataset of 960 equations of state (EOS) cross-checked between two all-electron codes, then used to verify (and improve) ten pseudopotential methods. Such effort is achieved by deploying AiiDA common workflows that provide automatic input parameter selection, identical input/output interface across codes, and full reproducibility. We finally discuss to which extent results can be reused for different goals (e.g., formation energies), and plans to extend common workflow interfaces to more properties (bands, phonons).

Publication: S.P. Huber, E. Bosoni, M. Bercx, et al., Common workflows for computing material properties using different quantum engines. npj Comput Mater 7, 136 (2021). https://doi.org/10.1038/s41524-021-00594-6

Presenters

  • Marnik Bercx

    THEOS, EPFL; NCCR MARVEL

Authors

  • Marnik Bercx

    THEOS, EPFL; NCCR MARVEL

  • Emanuele Bosoni

    ICMAB-CSIC, Spain

  • Peter Blaha

    Vienna Univ of Technology

  • Jens Bröder

    Forschungszentrum Jülich, Germany

  • Martin Callsen

    Institute of Atomic and Molecular Sciences, Academia Sinica

  • Stefaan Cottenier

    Ghent University, Belgium

  • Augustin Degomme

    Univ. Grenoble-Alpes, CEA, France

  • Espen Flage-Larsen

    SINTEF Industry, Norway

  • Marco Fornari

    Central Michigan University

  • Alberto Garcia

    ICMAB-CSIC, Spain

  • Bonan Zhu

    University College London, United Kingdom, University College London

  • Gian-Marco Rignanese

    Universite catholique de Louvain

  • Georg Kastlunger

    Technical University of Denmark

  • Chris J Pickard

    Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom, University of Cambridge, United Kingdom

  • Matthias Krack

    Paul Scherrer Institut, Switzerland

  • Daniel Wortmann

    Forschungszentrum Jülich, Germany, Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

  • Tiziano M Müller

    HPE HPC/AI Research Lab, Switzerland

  • Thomas D Kuhne

    University of Paderborn, Germany

  • Aliaksandr V Yakutovich

    Empa, Switzerland

  • Oleg Rubel

    McMaster University, Canada

  • Michael Wolloch

    University of Vienna, Austria

  • Sebastiaan P Huber

    Microsoft Azure Quantum

  • Nicola Marzari

    Ecole Polytechnique Federale de Lausanne, THEOS, EPFL; NCCR MARVEL; LMS, Paul Scherrer Institute, THEOS, EPFL; NCCR MARVEL; LMS, Paul Scherrer Institut, THEOS, EPFL; NCCR, MARVEL; LMS, Paul Scherrer Institut, THEOS, EPFL, THEOS, EPFL; NCCR MARVEL; LSM Paul Scherrer Insitut, THEOS, EPFL; LMS, Paul Scherrer Institut; NCCR MARVEL

  • Giovanni Pizzi

    THEOS, EPFL; NCCR MARVEL; LMS, Paul Scherrer Institute, THEOS, EPFL; NCCR, MARVEL; LMS, Paul Scherrer Institut, THEOS, EPFL; NCCR MARVEL; LMS, Paul Scherrer Institut