APS Logo

Discovery of a topological quantum link

POSTER

Abstract

Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state. Over the past decades, these invariants have come to play a key role in describing matter, providing the foundation for understanding superfluids, magnets, the quantum Hall effect, topological insulators and Weyl semimetals. We introduce a remarkable linking number (knot theory) invariant associated with loops of electronic band crossings in the mirror-symmetric ferromagnet Co2MnGa [1-4]. Using state-of-the-art soft X-ray and vacuum ultraviolet ARPES, we observe three intertwined degeneracy loops in the bulk Brillouin zone three-torus, T3. We find that each loop links each other loop twice. Through systematic investigation of this linked loop quantum state, we explicitly draw its link diagram and conclude, in analogy with knot theory, that it exhibits linking number (2,2,2), providing a direct experimental determination of the topological invariant. On the sample surface, we further predict and observe Seifert boundary states protected by the bulk linked loops, suggestive of a Seifert bulk-boundary correspondence. Our observation of a quantum loop link motivates the application of knot theory to the exploration of quantum matter.

1. I. Belopolski et al. Nature 604, 647 (2022).

2. I. Belopolski et al. Phys. Rev. Lett. 127, 256403 (2021).

3. I. Belopolski et al. Science 365, 6459 (2019).

4. M. Z. Hasan, G. Chang, I. Belopolski et al. Nat. Rev. Mat. 6, 784 (2021).

Publication: I. Belopolski et al. Observation of a linked-loop quantum state in a topological magnet. Nature 604, 647-652 (2022).

Presenters

  • Ilya Belopolski

    RIKEN, RIKEN CEMS

Authors

  • Ilya Belopolski

    RIKEN, RIKEN CEMS

  • Guoqing Chang

    Nanyang Technological University, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore

  • Tyler A Cochran

    Princeton University

  • Zi-Jia Cheng

    Princeton University

  • Xian Yang

    Princeton University

  • Cole Hugelmeyer

    Princeton University

  • Kaustuv Manna

    Max Planck Institute for Chemical Physics of Solids

  • Jia-Xin Yin

    2Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA, Princeton University

  • Guangming Cheng

    Princeton University

  • Maksim Litskevich

    Princeton University

  • Nana Shumiya

    Princeton University

  • Songtian Sonia Zhang

    Columbia University

  • Chandra Shekhar

    Max Planck Institute for Chemical Physics of Solids

  • Niels B Schröter

    Max Planck Institute of Microstructure Physics, Paul Scherrer Institut

  • Alla Chikina

    Paul Scherrer Institut, Aarhus University

  • Craig Polley

    MAXIV laboratory, Lund University, Sweden, MAX IV Laboratory, Lund University, MAX IV Laboratory

  • Balasubramanian Thiagarajan

    MAXIV Laboratory, Lund University, Sweden, MAX IV Laboratory, Lund University, MAX IV Laboratory

  • Mats Leandersson

    MAX IV Laboratory, Lund University

  • Johan Adell

    MAX IV Laboratory, Lund University

  • Shin-Ming Huang

    Natl Sun Yat Sen Univ

  • Nan Yao

    Princeton University

  • Vladimir N Strocov

    Swiss Light Source, Paul Scherrer Institut, Swiss Light Source, Paul Scherrer Insitute, Swiss Light Source, Paul Scherrer Institut

  • Claudia Felser

    Max Planck Institute for Chemical Physic, Max Planck Institute for Chemical Physics of Solids

  • M. Zahid M Hasan

    Princeton University