APS Logo

Realizing a deep reinforcement learning agent discovering real-time feedback control strategies for a quantum system

ORAL

Abstract

To realize the full potential of quantum technologies, finding good strategies to control quantum information processing devices in real time becomes increasingly important. Usually these strategies require a precise understanding of the device itself, which is generally not available. Model-free reinforcement learning circumvents this need by discovering control strategies from scratch without relying on an accurate description of the quantum system. Furthermore, important tasks like state preparation, gate teleportation and error correction need feedback at time scales much shorter than the coherence time, which for superconducting circuits is in the microsecond range. Developing and training a deep reinforcement learning agent able to operate in this real-time feedback regime has been an open challenge.

Here, we have implemented such an agent in the form of a latency-optimized deep neural network on an FPGA. We demonstrate its use to efficiently initialize a superconducting qubit into a target state. To train the agent, we use model-free reinforcement learning that is based solely on measurement data. We study the agent's performance for high-fidelity, low-fidelity and three-level readout, and compare with simple strategies based on thresholding. This demonstration motivates further research towards adoption of reinforcement learning for real-time feedback control of quantum devices and more generally any physical system requiring learnable low-latency feedback control.

Presenters

  • Jonas Landgraf

    Max Planck Institute for the Science of Light

Authors

  • Jonas Landgraf

    Max Planck Institute for the Science of Light

  • Kevin Reuer

    ETH Zurich

  • Thomas Foesel

    Max Planck Institute for the Science of Light

  • James O'Sullivan

    ETH Zurich

  • Liberto Beltrán

    ETH Zurich

  • Abdulkadir Akin

    ETH Zurich

  • Graham J Norris

    ETH Zurich

  • Ants Remn

    ETH Zurich

  • Michael Kerschbaum

    ETH Zurich

  • Jean-Claude Besse

    ETH Zurich

  • Florian Marquardt

    Max Planck Institute for the Science of Light, Friedrich-Alexander University Erlangen-

  • Andreas Wallraff

    ETH Zurich

  • Christopher Eichler

    ETH Zurich, ETH, ETH Zurich, FAU Erlangen-Nürnberg