Machine Learning for Quantum Matter II
FOCUS · F62 · ID: 1100899
Presentations
-
A Bayesian machine-learning approach to the quantum many-body problemInvited Talk: George Booth, King's College London
ORAL · Invited
–
Publication: • Gaussian process states: A data-driven representation of quantum many-body physics; A Glielmo, Y Rath, G Csányi, A De Vita, GH Booth, Physical Review X, 10, 041026 (2020).<br>• A Bayesian inference framework for compression and prediction of quantum states; Y Rath, A Glielmo, GH Booth, Journal of Chemical Physics, 153, 124108 (2020).<br>• Quantum Gaussian process state: A kernel-inspired state with quantum support data; Y Rath, GH Booth, Physical Review Research, 4, 023126 (2022).<br>
Presenters
-
George Booth
King's College London, Kings College London
Authors
-
George Booth
King's College London, Kings College London
-
-
Electronic excited states in deep variational Monte Carlo
ORAL
–
Publication: Electronic excited states in deep variational Monte Carlo (submitted manuscript under review)<br>(arXiv:2203.09472)
Presenters
-
Mike Entwistle
Freie Univ Berlin
Authors
-
Mike Entwistle
Freie Univ Berlin
-
Zeno Schätzle
Freie Univ Berlin
-
Paolo A Erdman
Freie Universität Berlin, Freie Univ Berlin
-
Jan Hermann
Freie Univ Berlin
-
Frank Noe
Freie Univ Berlin
-
-
Improving Machine Learning Modelling of Physical Properties with Isometry Invariants
ORAL
–
Presenters
-
Alya Alqaydi
Univ of Cambridge
Authors
-
Alya Alqaydi
Univ of Cambridge
-
Bartomeu Monserrat
University of Cambridge, Univ of Cambridge
-
-
Machine Learning Model of Generalized Force Field in Condensed Matter Systems
ORAL
–
Presenters
-
Gia-Wei Chern
University of Virginia
Authors
-
Gia-Wei Chern
University of Virginia
-
Puhan Zhang
University of Virginia
-
Sheng Zhang
University of Virginia
-
-
Improvements to Neural Network Backflow Wavefunctions
ORAL
–
Presenters
-
Zejun Liu
University of Illinois at Urbana-Champai
Authors
-
Zejun Liu
University of Illinois at Urbana-Champai
-
Bryan K Clark
University of Illinois at Urbana-Champaign
-
-
Similarities and differences in flat-band models with randomness detected by machine learning
ORAL
–
Presenters
-
Takumi Kuroda
University of Tsukuba
Authors
-
Takumi Kuroda
University of Tsukuba
-
Tomonari Mizoguchi
University of Tsukuba
-
Yasuhiro Hatsugai
University of Tsukuba
-
-
Studying the Superfluid Ground-State of the Unitary Fermi Gas with Fermionic Neural Networks.
ORAL
–
Presenters
-
Wan Tong Lou
Imperial College London
Authors
-
Wan Tong Lou
Imperial College London
-
Gino W Cassella
Imperial College London
-
Halvard Sutterud
Imperial College London
-
W Matthew C Foulkes
Imperial College London
-
Johannes Knolle
TU Munich, Germany
-
David Pfau
Deepmind, DeepMind
-
James Spencer
Deepmind, DeepMind
-
-
Machine learning quantum Monte Carlo: application to water clusters
ORAL
–
Presenters
-
Matteo Peria
Sorbonne University
Authors
-
Matteo Peria
Sorbonne University
-
Michele Casula
Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Museum National d'Histoire Naturelle, Paris, France, Sorbonne University, IMPMC, UMR 7590 CNRS - Sorbonne Université Paris
-
A. Marco Saitta
Sorbonne université-IMPMC, Sorbonne University, Sorbonne Université - IMPMC
-
-
Inverse Hamiltonian design by automatic differentiation
ORAL
–
Publication: K. Inui and Y. Motome, arXiv:2203.07157 (2022).<br>https://github.com/koji-inui/automatic-hamiltonian-design
Presenters
-
Koji Inui
RIKEN
Authors
-
Koji Inui
RIKEN
-
Yukitoshi Motome
University of Tokyo, Univ of Tokyo, Univ. of Tokyo
-
-
Variational simulations of fermionic matter with neural-network quantum states
ORAL
–
Publication: Variational solutions to fermion-to-qubit mappings in two spatial dimensions, Jannes Nys and Giuseppe Carleo, Quantum 6, 833 (2022). https://doi.org/10.22331/q-2022-10-13-833
Presenters
-
Jannes Nys
École Polytechnique Fédérale de Lausanne (EPFL)
Authors
-
Jannes Nys
École Polytechnique Fédérale de Lausanne (EPFL)
-
Giuseppe Carleo
École polytechnique fédérale de Lausanne, EPFL
-
-
Langevin Dynamics/Monte Carlo Simulations of Nanoscale Dielectric Function Modulations of Moire Materials
ORAL
–
Publication: "Langevin dynamics/Monte Carlo simulations method for calculating nanoscale dielectric functions of materials"<br>https://doi.org/10.1103/PhysRevMaterials.6.076001
Presenters
-
Steven B Hancock
University of Georgia
Authors
-
Steven B Hancock
University of Georgia
-
-
Machine learning universal empirical pseudopotentials for density functional theory calculations
ORAL
–
Presenters
-
Rokyeon Kim
Korea Institute for Advanced Study
Authors
-
Rokyeon Kim
Korea Institute for Advanced Study
-
Young-Woo Son
Korea Inst for Advanced Study, Korea Institute for Advanced Study
-