Symmetry breaking in the S=1/2 and S=1 pyrochlore Heisenberg antiferromagnets
ORAL
Abstract
We investigate the ground-state properties of the nearest-neighbor S=1/2 and S=1 pyrochlore Heisenberg antiferromagnet using three complementary numerical methods, density-matrix renormalization group (DMRG), pseudofermion functional renormalization group (PFFRG) and numerical linked cluster expansion. Within DMRG, we are able to reliably study clusters with up to 128 spins (for S=1/2) and 48 spins (for S=1) by keeping 20 000 SU(2) states. Our most striking finding in the S=1/2 case is a robust spontaneous inversion symmetry breaking, reflected in an energy density difference between the two sublattices of tetrahedra. We also determine the ground-state energy, E0/N sites=-0.490(6)J, by combining extrapolations of DMRG with those of a numerical linked cluster expansion. In the S=1 case, the investigated 32-site and 48-site clusters both show indications of a robust C3 rotation symmetry breaking of the ground-state spin correlations and the 48-site cluster additionally features inversion symmetry breaking. Our PFFRG analysis of various symmetry-breaking perturbations corroborates the findings of either C3 or a combined C3/inversion symmetry breaking. Moreover, in both methods the symmetry-breaking tendencies appear to be more pronounced than in the S=1/2 system.
–
Publication: I. Hagymási, R. Schäfer, R. Moessner, D.J. Luitz, Phys. Rev. Lett. 126, 117204 (2021).<br>I. Hagymási, V. Noculak, J. Reuther, arXiv:2207.01642
Presenters
Imre Hagymasi
Helmholtz-Zentrum Berlin für Materialen und Energie
Authors
Imre Hagymasi
Helmholtz-Zentrum Berlin für Materialen und Energie
Robin Schäfer
Max Planck Institute for the Physics of Complex Systems
Vincent Noculak
Freie Universität Berlin & Helmholtz-Zentrum für Materialien und Energie, Helmholtz-Zentrum Berlin für Materialen und Energie
Roderich Moessner
Max Planck Institute for the Physics of Complex Systems, Max Planck Institute for the Physics of, Max Planck Institute for Physics of Complex Systems
David Luitz
Universit ¨at Bonn,, University of Bonn, Universitaet Bonn
Johannes Reuther
Helmholtz-Zentrum Berlin, Freie Universitaet Berlin, Freie Universität Berlin & Helmholtz-Zentrum für Materialien und Energie & Indian Institute of Technology Madras, Helmholtz-Zentrum Berlin, Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universitaet Berlin