AI and Materials II
FOCUS · F53 · ID: 1067002
Presentations
-
Machine Learning Driven Automated Scanning Probe Microscopy for Material Discovery: Applications in Ferroelectric and Optoelectronic Materials
ORAL · Invited
–
Publication: 1. Liu, Y., Kelley, K. P., Vasudevan, R. K., Funakubo, H., Ziatdinov, M. A., & Kalinin, S. V. (2022). Experimental discovery of structure–property relationships in ferroelectric materials via active learning. Nature Machine Intelligence, 4(4), 341-350.<br>2. Liu, Y., Kelley, K. P., Funakubo, H., Kalinin, S. V., & Ziatdinov, M. (2022). Exploring physics of ferroelectric domain walls in real time: deep learning enabled scanning probe microscopy. Advanced Science, 2203957.<br>3. Ziatdinov, M. A., Liu, Y., Morozovska, A. N., Eliseev, E. A., Zhang, X., Takeuchi, I., & Kalinin, S. V. (2022). Hypothesis learning in automated experiment: application to combinatorial materials libraries. Advanced Materials, 2201345.<br>4. Liu, Y., Morozovska, A., Eliseev, E., Kelley, K. P., Vasudevan, R., Ziatdinov, M., & Kalinin, S. V. (2022). Hypothesis-Driven Automated Experiment in Scanning Probe Microscopy: Exploring the Domain Growth Laws in Ferroelectric Materials. arXiv preprint arXiv:2202.01089.<br>5. Liu, Y., Kelley, K. P., Vasudevan, R. K., Zhu, W., Hayden, J., Maria, J. P., ... & Kalinin, S. V. (2022). Automated Experiments of Local Non-linear Behavior in Ferroelectric Materials. arXiv preprint arXiv:2206.15110.
Presenters
-
Yongtao Liu
Oak Ridge National Laboratory, Oak Ridge National Lab
Authors
-
Yongtao Liu
Oak Ridge National Laboratory, Oak Ridge National Lab
-
Kyle Kelley
Oak Ridge National Lab, Oak Ridge National Laboratory
-
Rama K Vasudervan
Oak Ridge National Laboratory, Oak Ridge National Lab
-
Maxim Ziatdinov
Oak Ridge National Lab
-
Sergei V Kalinin
University of Tennessee, University of Tennessee, Knoxville
-
-
Accelerating the Search for High-Performance, Novel Materials with Active Learning - An Example: Thermal Insulators
ORAL
–
Presenters
-
Thomas A Purcell
The NOMAD Laboratory at the FHI-MPG and IRIS-Adlershof of HU, Berlin, Germany, The NOMAD Laboratory at the FHI of the MPG and IRIS-Adlershof of the Humboldt-Universität zu Berlin
Authors
-
Thomas A Purcell
The NOMAD Laboratory at the FHI-MPG and IRIS-Adlershof of HU, Berlin, Germany, The NOMAD Laboratory at the FHI of the MPG and IRIS-Adlershof of the Humboldt-Universität zu Berlin
-
Matthias Scheffler
The NOMAD Laboratory at the FHI-MPG and IRIS-Adlershof of HU, Berlin, Germany, The NOMAD Laboratory at the Fritz Haber Institute of the MPG, The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Germany
-
Christian Carbogno
The NOMAD Laboratory at the FHI-MPG and IRIS-Adlershof of HU, Berlin, Germany, Fritz Haber Institute of the Max Planck Society, The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Germany
-
Luca M Ghiringhelli
1. The NOMAD Laboratory at the FHI-MPG and IRIS-Adlershof of HU, Berlin, Germany 2. Physics Department and IRIS-Adlershof of HU, Berlin, Germany, Physics Department and IRIS-Adlershof of HU, Berlin, Germany and The NOMAD Laboratory at the FHI-MPG and HU, Berlin, Germany, NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität (HU) zu Berlin; Physics Department and IRIS-Adlershof of HU zu Berlin
-
-
In-silico discovery of HER/OER multi-metallic Alloy electrocatalysts through Density Functional theory calculations and active learning and machine learning
ORAL
–
Presenters
-
Kwak Seung Jae
Seoul National University, Seoul Natl Univ
Authors
-
Kwak Seung Jae
Seoul National University, Seoul Natl Univ
-
Minhee Park
Seoul National Univ.
-
Won Bo Lee
Seoul National University, Seoul National Univ.
-
YongJoo Kim
Kookmin University, Kookmin Univ.
-
-
Efficient Discovery of Air Separation Adsorbents via Multi-Fidelity Bayesian Optimization
ORAL
–
Presenters
-
Eric Taw
University of California, Berkeley
Authors
-
Eric Taw
University of California, Berkeley
-
Yuto Yabuuchi
University of California, Berkeley
-
Kurtis M Carsch
University of California, Berkeley
-
Rachel Rohde
University of California, Berkeley
-
Jeffrey R Long
University of California, Berkeley, University of California Berkeley
-
Jeffrey B Neaton
Lawrence Berkeley National Laboratory, University of California, Berkeley, Department of Physics, University of California, Berkeley; Materials Sciences Division, Lawrence Berkeley National Laboratory; Kavli Energy NanoScience Institute at Berkeley
-
-
Unveil the unseen: exploit information hidden in noise
ORAL
–
Publication: https://link.springer.com/article/10.1007/s10489-022-04102-1<br>Manuscript about concrete design submitted to Data-Centric Engineering journal
Presenters
-
Bahdan Zviazhynski
University of Cambridge
Authors
-
Bahdan Zviazhynski
University of Cambridge
-
Jessica C Forsdyke
University of Cambridge
-
Janet M Lees
University of Cambridge
-
Gareth J Conduit
University of Cambridge
-
-
Prediction of Crystal Symmetry Groups for Binary and Ternary Materials from Chemical Compositions using Machine Learning
ORAL
–
Presenters
-
Fahhad H Alharbi
King Fahd Univ KFUPM, King Fahd Univ KFUPM, SDAIA-KFUPM Joint Research Center for Artificial Intelligence
Authors
-
Mohammed Alghadeer
University of California, Berkeley
-
Abdulmohsen A Alsaui
Indian Institute of Technology Madras
-
Yousef A Alghofaili
Xpedite Information Technology
-
Fahhad H Alharbi
King Fahd Univ KFUPM, King Fahd Univ KFUPM, SDAIA-KFUPM Joint Research Center for Artificial Intelligence
-
-
Statistical Modeling of Frictional Properties: a Machine Learning Approach
ORAL
–
Presenters
-
Ranjan K Barik
University of South Florida
Authors
-
Ranjan K Barik
University of South Florida
-
Lilia M Woods
Univ of South Florida, University of South Florida
-
-
Machine Learning-Based Microstructure Prediction for Laser-Sintered Alumina
ORAL
–
Publication: [1] Geng, X., Hong, Y., et al. (2021). Ultra-fast, selective, non-melting, laser sintering of alumina with anisotropic and size-suppressed grains. Journal of the American Ceramic Society, 104(5), 1997-2006.<br>[2] Tang, J., Geng, X., et al. (2021). Machine learning-based microstructure prediction during laser sintering of alumina. Scientific Reports, 11(1), 1-10.<br>[3] Geng, X., Tang, J., et al. (2022). Machine learning-based inverse prediction of alumina's microstructure from hardness. Manuscript in preparation.
Presenters
-
Xiao Geng
clemson university
Authors
-
Xiao Geng
clemson university
-
jianan tang
Clemson Universisty, Department of Electrical and Computer Engineering, Clemson University
-
Jianhua Tong
Department of Materials Science and Engineering, Clemson University
-
Dongsheng Li
Advanced Manufacturing LLC
-
Hai Xiao
Department of Electrical and Computer Engineering, Clemson University
-
Fei Peng
Department of Materials Science and Engineering, Clemson University
-
-
Causal relations in determining functionalities in perovskite oxides
ORAL
–
Publication: A. Ghosh*, G. Palanichamy, D. P. Trujillo and S. Ghosh, "Insights into cation ordering of double perovskite oxides from machine learning and causal relations", Chem. Mater. 34, 16 (2022).
Presenters
-
Ayana Ghosh
Oak Ridge National Lab
Authors
-
Ayana Ghosh
Oak Ridge National Lab
-
Saurabh Ghosh
SRM University, SRM Institute of Science and Technology KTR
-
-
Machine Learning Prediction of Perovskite Solar Cell Properties under High Pressure
ORAL
–
Presenters
-
Minkyung Han
Stanford University
Authors
-
Minkyung Han
Stanford University
-
Chunjing Jia
University of Florida
-
Yu Lin
SLAC National Accelerator Laboratory
-
Cheng Peng
SLAC, SLAC National Accelerator Laboratory
-
Feng Ke
Stanford University
-
Youssef Nashed
SLAC National Accelerator Laboratory
-
-
Double descent, linear regression, and fundamental questions in materials model building
ORAL
–
Presenters
-
Gus L Hart
Brigham Young University
Authors
-
Gus L Hart
Brigham Young University
-
-
Curie temperature prediction models of magnetic Heusler alloys using machine learning methods based on first-principles data from ab-initio KKR-GF calculations
ORAL
–
Publication: Planned paper: <br>There is a paper in preparation having the same working title as the talk.
Presenters
-
Robin A Hilgers
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
Authors
-
Robin A Hilgers
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
-
Roman Kovacik
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
-
Daniel Wortmann
Forschungszentrum Jülich, Germany, Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
-
Stefan Blügel
Forschungszentrum Jülich GmbH, Forschungszentrum Jülich, Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany, Forschungszentrum Jülich GmBH
-
-
Physics Interpretable Ensemble Learning for Materials Property Prediction: Carbon as an Example
ORAL
–
Presenters
-
Xinyu Jiang
Arizona State University
Authors
-
Xinyu Jiang
Arizona State University
-