Mesoscopic fluctuating domains in strontium titanate
ORAL · Invited
Abstract
Spatial correlations between atoms can generate a depletion in the energy dispersion of acoustic phonons. Two well-known examples are rotons in superfluid helium and the Kohn anomaly in metals. Here I will present the observation of a large softening of the transverse acoustic mode in quantum paraelectric SrTiO3 by means of inelastic neutron scattering. In contrast to other known cases, this softening occurs at a tiny wave vector implying spatial correlation extending over a distance as long as 40 lattice parameters. We attribute this to the formation of mesoscopic fluctuating domains due to the coupling between local strain and ferroelectric fluctuations. Thus, a hallmark of the ground state of insulating SrTiO3 is the emergence of hybridized optical-acoustic phonons. I will discuss how these mesoscopic fluctuating domains may play a role in quantum tunneling, which impedes the emergence of a finite macroscopic polarization and change our understanding of the ground state of quantum paralectrics and their remarkable transport properties.
–
Publication: B. Fauqué et al., Phys. Rev. B 106, L140301 (2022)<br>S. Jiang et al, https://arxiv.org/abs/2201.13316
Presenters
-
Benoit Fauque
CNRS
Authors
-
Benoit Fauque
CNRS