Machine Learning for Spectroscopy
FOCUS · D53 · ID: 1066994
Presentations
-
Teaching Core-Hole Spectroscopy to a Deep Neural Network
ORAL · Invited
–
Presenters
-
Conor Rankine
University of York
Authors
-
Conor Rankine
University of York
-
Thomas Penfold
Newcastle University
-
-
AutoML-accelerated EELS/XAS as an advanced structure characterization tool
ORAL
–
Presenters
-
Haili Jia
Argonne National Laboratory; Johns Hopkins University
Authors
-
Haili Jia
Argonne National Laboratory; Johns Hopkins University
-
Gihyeok Lee
Lawrence Berkeley National Laboratory
-
Yiming Chen
Argonne National Laboratory
-
Wanli Yang
Lawrence Berkeley National Labrotary, Lawrence Berkeley National Laboratory
-
Maria K Chan
Argonne National Laboratory
-
-
Featurization Approaches for Machine Learning of X-ray Absorption Spectra
ORAL
–
Presenters
-
Yiming Chen
Argonne National Laboratory
Authors
-
Yiming Chen
Argonne National Laboratory
-
Maria K Chan
Argonne National Laboratory
-
Shyue Ping Ong
University of California, San Diego
-
Chengjun Sun
Argonne National Laboratory, Argonne national laboratory
-
Steve M Heald
Argonne National Laboratory
-
chi chen
University of California, San Diego
-
-
Multi-code Benchmark on Ti K-edge X-ray Absorption Spectra of Ti-O Compounds
ORAL
–
Presenters
-
Fanchen Meng
Brookhaven National Laboratory
Authors
-
Fanchen Meng
Brookhaven National Laboratory
-
Benedikt Maurer
Humboldt University of Berlin
-
Fabian Peschel
Humboldt University of Berlin
-
Sencer Selcuk
Brookhaven National Laboratory
-
Mark S Hybertsen
Brookhaven National Laboratory
-
Xiaohui Qu
Brookhaven National Laboratory
-
Christian W Vorwerk
University of Chicago
-
Claudia Draxl
Humboldt University of Berlin
-
John Vinson
National Institute of Standards and Tech
-
Deyu Lu
Brookhaven National Laboratory
-
-
Deep Learning and Infrared Spectroscopy: Representation Learning with a β-Variational Autoencoder
ORAL
–
Publication: Grossutti, M., D'Amico, J., Quintal, J., MacFarlane, H., Quirk, A., & Dutcher, J. R. (2022). Deep Learning and Infrared Spectroscopy: Representation Learning with a ß-Variational Autoencoder. The Journal of Physical Chemistry Letters, 13(25), 5787-5793.
Presenters
-
Michael Grossutti
University of Guelph
Authors
-
Michael Grossutti
University of Guelph
-
John R Dutcher
Univ of Guelph
-
-
A machine learning framework for Raman spectrum prediction
ORAL
–
Presenters
-
Maria K Chan
Argonne National Laboratory
Authors
-
Nina Andrejevic
Argonne National Laboratory
-
Michael J Davis
Argonne National Laboratory
-
Mingda Li
Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology
-
Maria K Chan
Argonne National Laboratory
-
-
AI-powered biotechnology platform of single-cell Raman micro-spectroscopy enables high-resolution dynamical phenotyping study of bacterial growth and cellular heterogeneity
ORAL
–
Publication: planned papers: Integrated biotechnology platform of single-cell Raman spectroscopy (SCRS) and advanced data analytics enables high-resolution phenotyping study of bacterial growth dynamics and cellular heterogeneity
Presenters
-
Zijian Wang
Cornell University
Authors
-
Zijian Wang
Cornell University
-
Jenny Kao-Kniffin
Cornell University
-
Eric J Craft
USDA
-
Matthew C Reid
Cornell University
-
Andrea Giometto
Cornell University, Cornell
-
Kilian Q Weinberger
Cornell University
-
April Z Gu
Cornell University
-
-
EllipsoNet: Deep-learning-enabled optical ellipsometry for complex thin films
ORAL
–
Presenters
-
Ziyang Wang
Rice university
Authors
-
Ziyang Wang
Rice university
-
-
Exploiting Sparsity in Artificial Neural Networks for Spectroscopic Data
ORAL
–
Presenters
-
Jakub Vrabel
CEITEC, Brno University of Technology
Authors
-
Jakub Vrabel
CEITEC, Brno University of Technology
-
Erik Kepes
CEITEC, Brno University of Technology
-
Pavel Nedelnik
CEITEC, Brno University of Technology
-
Pavel Porizka
CEITEC, Brno University of Technology
-
Jozef Kaiser
CEITEC, Brno University of Technology
-
-
Deep machine learning the spectral function of a hole in a quantum antiferromagnet
ORAL
–
Presenters
-
Weiguo Yin
Brookhaven National Laboratory
Authors
-
Weiguo Yin
Brookhaven National Laboratory
-
Jackson Lee
Rutgers University
-
Matthew R Carbone
Brookhaven National Laboratory, Computational Science Initiative, Brookhaven National Laboratory
-
-
A Modernized View of Coherence Pathways in Magnetic Resonance Spectroscopy
ORAL
–
Publication: A Modernized View of Coherence Pathways Applied to Magnetic Resonance Experiments in Unstable, Inhomogeneous Fields<br>Alec Angus Beaton, Alexandria Guinness and John Mark Franck<br>J. Chem. Phys. (in press) (2022); https://doi.org/10.1063/5.0105388
Presenters
-
John M Franck
Syracuse University
Authors
-
John M Franck
Syracuse University
-
-
Machine Learning for Improvements to Gamma Spectroscopy in Nuclear Fusion Diagnostics
ORAL
–
Publication: Planned paper: Machine Learning for Improvements to Gamma Spectroscopy in Nuclear Fusion Diagnostics
Presenters
-
Kimberley S Lennon
Sheffield Hallam University
Authors
-
Kimberley S Lennon
Sheffield Hallam University
-
Callum Grove
UKAEA
-
Joseph Neilson
UKAEA
-
Chantal Nobs
UKAEA
-
Lee Packer
UKAEA
-
Robin Smith
Sheffield Hallam University, University of Connecticut
-