Computational Design, Understanding and Discovery of Novel Materials I
FOCUS · D44 · ID: 1099040
Presentations
-
Designing magnesium alloys from density-functional theory and atomistic models
ORAL · Invited
–
Publication: * Y. Dan and D. R. Trinkle, Mater. Res. Lett. 10, 360–368 (2022), doi://10.1080/21663831.2022.2051763<br>* M. R. Fellinger, L. G. Hector, Jr., and D. R. Trinkle, Phys. Rev. Mater. 6, 013607 (2022), doi://10.1103/PhysRevMaterials.6.013607
Presenters
-
Dallas R Trinkle
University of Illinois Urbana-Champaign
Authors
-
Dallas R Trinkle
University of Illinois Urbana-Champaign
-
-
Machine learning and Monte Carlo simulations of the Gibbs free energy of the Fe-C system in a magnetic field
ORAL
–
Presenters
-
Ming Li
University of Florida
Authors
-
Ming Li
University of Florida
-
Richard G Hennig
University of Florida
-
Luke Wirth
University of Illinois Urbana-Champaign
-
Dallas R Trinkle
University of Illinois Urbana-Champaign
-
Ajinkya C Hire
University of Florida
-
Stephen R Xie
KBR at NASA Ames
-
Michele Campbell
University of California-Merced
-
-
Computational prediction of the chemical order-disorder phase diagram of FeV
ORAL
–
Presenters
-
Cesar Diaz
University of Texas at El Paso
Authors
-
Cesar Diaz
University of Texas at El Paso
-
Jorge A Munoz
University of Texas at El Paso
-
-
Large-scale search for stable tin alloys with machine learning potentials
ORAL
–
Presenters
-
Daviti Gochitashvili
SUNY Binghamton University
Authors
-
Daviti Gochitashvili
SUNY Binghamton University
-
Aidan Thorn
Binghamton University
-
Saba Kharabadze
SUNY Binghamton University, Binghamton University
-
Aleksey Kolmogorov
Binghamton University
-
-
First-principles elastic and mechanical properties from Born perturbation expansion
ORAL
–
Publication: [1] C. Lin, S. Ponce and N. Marzari, arXiv:2209.09520 (2022).<br>[2] P. Giannozzi et al. J. Phys.: Condens. Matter 29, 465901 (2017).<br>[3] N. Mounet et al. Nat. Nanotechnol. 13, 246 (2018).
Presenters
-
Changpeng Lin
THEOS, EPFL; NCCR MARVEL
Authors
-
Changpeng Lin
THEOS, EPFL; NCCR MARVEL
-
Samuel Poncé
Université catholique de Louvain
-
Davide Campi
Università degli studi di Milano-Bicocca, Università degli Studi di Milano-Bicocca
-
Nicola Marzari
Ecole Polytechnique Federale de Lausanne, THEOS, EPFL; NCCR MARVEL; LMS, Paul Scherrer Institute, THEOS, EPFL; NCCR MARVEL; LMS, Paul Scherrer Institut, THEOS, EPFL; NCCR, MARVEL; LMS, Paul Scherrer Institut, THEOS, EPFL, THEOS, EPFL; NCCR MARVEL; LSM Paul Scherrer Insitut, THEOS, EPFL; LMS, Paul Scherrer Institut; NCCR MARVEL
-
-
Mechanism governing electronic charge rearrangements in random alloys
ORAL
–
Presenters
-
Wai-Ga D Ho
Florida State University
Authors
-
Wai-Ga D Ho
Florida State University
-
Mariia Karabin
Oak Ridge National Lab, Oak Ridge National Laboratory
-
Yang Wang
Carnegie Mellon University, Pittsburgh Supercomput Ctr, Pittsburgh Supercomputing Center
-
Markus Eisenbach
Oak Ridge National Laboratory
-
George M Stocks
Oak Ridge National Laboratory
-
Xianglin Liu
Oak Ridge National Laboratory
-
Wasim R Mondal
Middle Tennessee State University
-
Hanna Terletska
Middle Tennessee State University
-
Ka-Ming Tam
Louisiana State University
-
Liviu Chioncel
University of Augsburg
-
Vladimir Dobrosavljevic
Florida State University
-
-
Electrical resistivity of disordered systems using first-principles LSMS calculations
ORAL
–
Presenters
-
Vishnu Raghuraman
Carnegie Mellon University
Authors
-
Vishnu Raghuraman
Carnegie Mellon University
-
Markus Eisenbach
Oak Ridge National Laboratory
-
Yang Wang
Carnegie Mellon University, Pittsburgh Supercomput Ctr, Pittsburgh Supercomputing Center
-
Michael Widom
Carnegie Mellon University, Carnegie Mellon Univ
-
-
Action space and features for complex multicomponent alloys and ceramics property prediction with deep reinforcement learning
ORAL
–
Presenters
-
Artem Pimachev
University of Colorado, Boulder
Authors
-
Artem Pimachev
University of Colorado, Boulder
-
Sanghamitra Neogi
University of Colorado, Boulder
-
-
Multi-objective optimization of High-entropy alloy properties
ORAL
–
Publication: F. Moitzi, L. Romaner, A.V. Ruban, O.E. Peil, Accurate ab initio modeling of solid solution strengthening in high entropy alloys, accepted in Phys. Rev. Mater.<br><br>I Novikov, O Kovalyova, A Shapeev, M Hodapp, AI-accelerated materials informatics method for the discovery of ductile alloys, Journal of Materials Research, 1-14
Presenters
-
Franco Moitzi
Materials Center Leoben Forschung GmbH (
Authors
-
Franco Moitzi
Materials Center Leoben Forschung GmbH (
-
Oleg E Peil
Materials Center Leoben Forschung GmbH
-
Max Hodapp
Materials Center Leoben Forschung GmbH
-
Lorenz Romaner
University of Leoben
-
-
Efficient generation of doped crystal structure model by combinatorial mathematics
ORAL
–
Publication: [1] G.I. Prayogo et al., J. Chem. Inf. Model 62, 2909 (2022); https://doi.org/10.1021/acs.jcim.2c00389
Presenters
-
Ryo Maezono
Japan Adv Inst of Sci and Tech, JAIST
Authors
-
Ryo Maezono
Japan Adv Inst of Sci and Tech, JAIST
-
Genki I Prayogo
JAIST
-
Andrea Tirelli
SISSA
-
Keishu Uchimura
JAIST
-
Kenta Hongo
Japan Adv Inst of Sci and Tech, JAIST
-
Kousuke Nakano
Japan Adv Inst of Sci and Tech, SISSA, Japan Adv Inst of Sci and Tech; International Institute for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste Italy, SISSA
-