APS Logo

Ultra high resolution potential imaging using the quantum twisting microscope

ORAL

Abstract

Imaging the local electrostatic potential of quantum materials plays a crucial role in understanding charge order, broken symmetries, and phase transitions. Until now, the most sensitive tool for such imaging is the scanning single electron transistor (SET), which has unearthed a wealth of information in van der Waals systems. However, it is spatially limited by the lithographically defined dimensions of a quantum dot on a tip or cantilever hovering above the sample of interest, resulting in a resolution on the order of 100 nanometers. In this talk, we introduce a new experimental approach to image the electrostatic potential in 2D systems, achieving two orders of magnitude improvement in spatial resolution and operating from room temperature down to cryogenic temperatures. This scanning charge detector is built from the same platform as the quantum twisting microscope (QTM): we assemble in situ van der Waals heterostructures by bringing 2D tip and sample surfaces into contact while simultaneously scanning the sample. This geometry overcomes the limits of previous scanning SETs, enabling resolution of about 1 nanometer. Our technique promises to open up wide-ranging opportunities for direct nanoscale visualization of electronic phenomena with unprecedented spatial resolution in a number of 2D systems, including imaging topological edge states and within moiré length scales.

Presenters

  • Dahlia R Klein

    Weizmann Institute of Science

Authors

  • Dahlia R Klein

    Weizmann Institute of Science

  • Uri Zondiner

    Weizmann Institute of Science

  • Takashi Taniguchi

    National Institute for Materials Science, Kyoto Univ, International Center for Materials Nanoarchitectonics, National Institute of Materials Science, Kyoto University, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-044, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science, Japan, National Institute For Materials Science, NIMS, National Institute for Material Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, NIMS Japan

  • Kenji Watanabe

    National Institute for Materials Science, Research Center for Functional Materials, National Institute of Materials Science, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-044, Japan, NIMS, Research Center for Functional Materials, National Institute for Materials Science, National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan, NIMS Japan

  • Shahal Ilani

    Weizmann Institute of Science