Effects of membrane viscoelasticity on the red blood cell dynamics in a microcapillary
ORAL
Abstract
The mechanical properties of red blood cells (RBCs) play key roles in their biological functions in microcirculation. In particular, RBCs must deform significantly to travel through microcapillaries with sizes comparable to or even smaller than their own. While the dynamics of RBCs in microcapillaries have received considerable attention, the effect of membrane viscoelasticity has been largely overlooked. In this work, we present a computational study based on the boundary integral method and thin-shell mechanics to examine how membrane viscoelasticity influences the dynamics of RBCs flowing through straight and constricted microcapillaries. Our results reveal that the cell with a viscoelastic membrane undergoes substantially different motion and deformation compared to results based on a purely elastic membrane model. Comparisons with experimental data also suggest the importance of accounting for membrane viscoelasticity in order to properly capture the transient dynamics of an RBC flowing through a microcapillary. Taken together, these findings demonstrate the significant effects of membrane viscoelasticity on RBC dynamics in different microcapillary environments. The computational framework also lays the groundwork for more accurate quantitative modeling of the mechanical response of RBCs in their mechanotransduction process in subsequent investigations.
–
Presenters
-
Ali Gurbuz
Santa Clara University
Authors
-
Ali Gurbuz
Santa Clara University
-
On Shun Pak
Santa Clara University
-
Michael Taylor
Santa Clara University
-
Mettupalayam V Sivaselvan
University at Buffalo
-
Frederick Sachs
University at Buffalo