APS Logo

Evidence of fluctuation-induced first-order phase transition in active matter

ORAL

Abstract

In Vicsek-like active matter systems the interplay between density fluctuations and ferromagnetic/imitation interactions gives rise to a rich phenomenology. In particular, the ordering transition to the flocking state seems to be similar to a first-order phase transition. Intuitively this happens because of the positive feedback between density fluctuations and ferromagnetic interaction, however, a theoretical explanation is still missing. We address this problem by studying the Malthusian Toner-Tu theory (MTT) in its near-ordering phase. Because of the birth/death process, characteristic of this Malthusian model, density fluctuations are partially suppressed but still strong enough to give rise to a non-trivial phenomenology. We study the MTT model with perturbative renormalization group techniques. A one-loop calculation shows that the renormalization group flow drives the system in an unstable region, suggesting a fluctuation-induced first-order phase transition. This calculation could provide a rigorous explanation of why the disorder/order transition is first order in active matter systems.

Publication: 1] T. Vicsek, A. Czir ´ok, E. Ben-Jacob, I. Cohen, and O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).<br>[2] M. Kardar, Statistical Physics of Fields (Cambridge University Press, 2007).<br>[3] G. Baglietto and E. V. Albano, Phys. Rev. E 80, 50103(2009).<br>[4] H. Chat ´e, F. Ginelli, G. Gr ´egoire, and F. Raynaud, PhysRev E Stat Nonlin Soft Matter Phys 77, 46113 (2008).<br>[5] T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012).<br>[6] J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).<br>[7] L. Chen, J. Toner, and C. F. Lee, New J. Phys. 17,42002 (2015).<br>[8] A. Cavagna, L. Di Carlo, I. Giardina, T. S. Grigera, and G. Pisegna, Phys. Rev. Res. 3 (2021), 10.1103/physrevresearch.3.013210.<br>[9] J. Toner, Phys. Rev. Lett. 108, 88102 (2012).<br>[10] L. D. Landau and E. M. Lifshitz, "Fluid mechanics: Landau and Lifshitz: course of theoretical physics," (1987).<br>[11] L. Chen, C. F. Lee, and J. Toner, Phys. Rev. E 102,22610 (2020).<br>[12] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1,323 (2010).<br>[13] L. Chen, C. F. Lee, J. Toner, and Others, Phys. Rev.Lett. 125, 98003 (2020).<br>[14] L. Chen, C. F. Lee, J. Toner, et al., Physical ReviewLetters 125, 098003 (2020).<br>[15] J. Toner, Y. Tu, and S. Ramaswamy, Ann. Phys. 318,170 (2005).<br>[16] J. Toner, Phys. Rev. E. Stat Nonlin Soft Matter Phys86, 31918 (2012).<br>[18] D. Martin, H. Chat ´e, C. Nardini, A. Solon, J. Tailleur,and F. Van Wijland, Phys. Rev. Lett. 126, 148001(2021).<br>[19] J. Cardy, Scaling and renormalization in statisticalphysics, Vol. 5 (Cambridge university press, 1996).<br>[20] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev.<br>A 16 (1977), 10.1103/PhysRevA.16.732.<br>[23] J. Toner, Phys. Rev. B 26, 462 (1982).<br>[24] C. Dasgupta and B. I. Halperin, Phys. Rev. Lett. 47,1556 (1981).<br>[25] D. J. Amit and V. Martin-Mayor, Field Theory,the Renormalization Group, and Critical Phenomena:Graphs to Computers ThirdEdition (World ScientificPublishing Company, 2005).<br>[26] K. Oerding, F. Van Wijland, J. P. Leroy, and H. J.Hilhorst, J. Stat. Phys. 99, 1365 (2000), arXiv:9910351[cond-mat]

Presenters

  • Luca Di Carlo

    Princeton university

Authors

  • Luca Di Carlo

    Princeton university