APS Logo

Algebraic canonical quantization of lumped superconducting networks

ORAL

Abstract

We present a systematic canonical quantization procedure for lumped-element superconducting networks [1,2,3] by using a redundant configuration-space description. The algorithm is based on an original, explicit, and constructive implementation of the symplectic diagonalization of positive semidefinite Hamiltonian matrices, a particular instance of Williamson's theorem [4,5]. With it, we derive canonically quantized discrete-variable descriptions of passive causal systems. We exemplify the algorithm with representative singular electrical networks, a nonreciprocal extension for the black-box quantization method, as well as an archetypal Landau quantization problem. This viewpoint can be enriched using the techniques of quantization of constraint systems [5].

[1] M. H. Devoret, Proceedings of the Les Houches Summer School, Session LXIII (Elsevier, edited by S. Reynaud, E. Giacobino, and J. ZinnJustin, New York, 1995).

[2] G. Burkard, R. H. Koch, and D. P. DiVincenzo, Physical Review B 69, 064503 (2004).

[3] A. Parra-Rodriguez, I. L. Egusquiza, D. P. DiVincenzo, and E. Solano, Physical Review B 99, 014514 (2019).

[4] J. Williamson, American Journal of Mathematics 58, 141 (1936).

[5] A. Laub and K. Meyer, Celestial Mechanics 9, 213 (1974).

[6] M. Rymarz and D. P. DiVincenzo, arXiv:2208.11767 (2022).

Publication: Algebraic canonical quantization of lumped superconducting networks, I. L. Egusquiza and A. Parra-Rodriguez, Phys. Rev. B 106, 024510 (2022).

Presenters

  • Adrian Parra Rodriguez

    Université de Sherbrooke

Authors

  • Adrian Parra Rodriguez

    Université de Sherbrooke

  • Iñigo L Egusquiza

    University of the Basque Country