APS Logo

Transport and noise measurements in long, narrow YbRh<sub>2</sub>Si<sub>2</sub> wires

ORAL

Abstract

The heavy fermion compound YbRh2Si2 exhibits a magnetic field-induced quantum critical point, between an antiferromagnetically ordered phase and a paramagnetic heavy Fermi liquid phase. Although the zero-field magnetic ordering temperature is only 70 mK, quantum critical non-Fermi liquid behavior persists over a broad temperature range, providing a wide parameter space to study the electron correlations in this “strange metal” system. Previous shot noise measurements on short YbRh2Si2 nanowires show a strong suppression compared to Fermi liquid metals like gold, and it is important to assess if this is an essential feature of strange metals due to a lack of quasiparticles, or whether strong electron-phonon coupling plays a role. Here we fabricate long, narrow YbRh2Si2 wires using the same method as in the short nanowire experiments and infer the electron-phonon energy transfer strength using the noise measurement. The results show the electron-phonon energy transfer strength in YbRh2Si2 is comparable with that in a gold device, meaning that the suppression of shot noise in YbRh2Si2 nanowires is not due to phonons. Our measurements provide supplemental support for previous work and quantify the energy transfer strength from electron to phonon in YbRh2Si2.

Presenters

  • Liyang Chen

    Rice University

Authors

  • Liyang Chen

    Rice University

  • Dale T Lowder

    Rice University

  • Emine Bakali

    Institute of Solid State Physics, TU Wien, Institute of Solid State Physics, Technischen Universita¨t (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria

  • Aaron M Andrews

    Institute of Solid State Electronics, TU Wien, Institute of Solid State Electronics, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Geba¨ude CH, 1040 Vienna, Austria

  • Werner Schrenk

    Institute of Solid State Electronics, Center for Micro and Nanostructures, TU Wien, Institute of Solid State Electronics, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Geba¨ude CH, 1040 Vienna, Austria

  • Monika Waas

    Institute of Solid State Physics, TU Wien, Institute of Solid State Physics, Technischen Universita¨t (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.

  • Robert Svagera

    Institute of Solid State Physics, TU Wien, Institute of Solid State Physics, Technischen Universita¨t (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.

  • Gaku Eguchi

    Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria, Institute of Solid State Physics, TU Wien, Vienna University of Technology, Institute of Solid State Physics, Technischen Universita¨t (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.

  • Lukas Prochaska

    Vienna Univ of Technology

  • Qimiao Si

    Rice University

  • Silke Buehler-Paschen

    Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria, TU Vienna, Vienna Univ of Technology, Institute of Solid State Physics, TU Wien, Vienna University of Technology, Institute of Solid State Physics, Technischen Universita¨t (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.

  • Douglas Natelson

    Rice University, Department of Physics and Astronomy, Department of Electrical and Computer Engineering, Department of Materials Science and NanoEngineering, Rice University