Large-Scale First Principles Atomistic Simulation: Recent Advances and New Challenges
INVITED · Z43 · ID: 17978
Presentations
-
Automated parameterization of the atomic cluster expansion for predicting phase stability and mechanical properties
ORAL · Invited
–
Presenters
-
Ralf Drautz
ICAMS, University of Bochum, Ruhr-Universität Bochum
Authors
-
Ralf Drautz
ICAMS, University of Bochum, Ruhr-Universität Bochum
-
-
Symmetry Considerations for Machine Learning Algorithms Operating on 3D Geometry and Physical Data
ORAL · Invited
–
Publication: https://www.sciencedirect.com/science/article/abs/pii/S2589597420302641<br>https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
Presenters
-
Tess E Smidt
Massachusetts Institute of Technology
Authors
-
Tess E Smidt
Massachusetts Institute of Technology
-
-
Large Scale Simulations with the Deep Potential Method
ORAL · Invited
–
Presenters
-
Roberto Car
Princeton University
Authors
-
Roberto Car
Princeton University
-
-
ChIMES: Toward a Machine-Learned Solution for Simulations of Condensed Phase Chemistry Under Extreme Conditions
ORAL · Invited
–
Presenters
-
Rebecca K Lindsey
Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory
Authors
-
Rebecca K Lindsey
Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory
-
-
Machine Learning for Molecular Properties: Going Beyond Interatomic Potentials
ORAL · Invited
–
Presenters
-
Sergei Tretiak
Los Alamos Natl Lab, Los Alamos National Laboratory
Authors
-
Sergei Tretiak
Los Alamos Natl Lab, Los Alamos National Laboratory
-