Material Science and Machine Learning III
FOCUS · Z32 · ID: 48677
Presentations
-
The interplay between quantum computing and reinforcement learning
ORAL · Invited
–
Presenters
-
Vedran Dunjko
Leiden University
Authors
-
Vedran Dunjko
Leiden University
-
-
Development of machine learning framework to fit quantum-mechanical ab-initio potential energy surface to a cite-cite molecular potential
ORAL
–
Presenters
-
Bhanuday Sharma
Indian Institute of Technology Kanpur
Authors
-
Bhanuday Sharma
Indian Institute of Technology Kanpur
-
Savitha Pareek
DELL HPC and AI Innovation Lab, Bengaluru, India
-
Ashish K Singh
DELL HPC and AI Innovation Lab, Bengaluru, India
-
Rakesh Kumar
Indian Institute of Technology Kanpur, India, Indian Institute of Technology Kanpur
-
-
Machine learning the saling property of density functionals via data augmentation
ORAL
–
Presenters
-
Weiyi Gong
Temple University
Authors
-
Weiyi Gong
Temple University
-
Tao Sun
Stony Brook University
-
Peng Chu
Temple University
-
Hexin Bai
Temple University
-
Anoj Aryal
Temple University
-
Shah Tanvir-Ur-Rahman Chowdhury
Temple University
-
Jie Yu
Temple University
-
Haibin Ling
Stony Brook University
-
John P Perdew
Temple University, Departments of Physics and Chemistry, Temple U., Philadelphia, PA 19122
-
Qimin Yan
Temple University
-
-
Benchmarking Descriptors, Models, and Systems for Many-Body Machine Learned Force Fields in Molten Transition Metals
ORAL
–
Presenters
-
Cameron J Owen
Harvard University
Authors
-
Cameron J Owen
Harvard University
-
Steven B Torrisi
Harvard University, Toyota Research Institute, Harvard University
-
Isabel Diersen
Harvard University
-
Lixin Sun
Harvard University
-
Jin Soo Lim
Harvard University
-
Yu Xie
Harvard University
-
Jonathan P Vandermause
Harvard University
-
Boris Kozinsky
Harvard University
-
-
Zirconium Machine Learned Potential Trained on a Euclidean Neural Network
ORAL
–
Presenters
-
Vanessa J Meraz
University of Texas at El Paso
Authors
-
Vanessa J Meraz
University of Texas at El Paso
-
Sofia G Gomez
University of Texas at El Paso
-
Valeria I Arteaga Muniz
University of Texas at El Paso
-
Adrian De la Rocha Galán
University of Texas at El Paso
-
Tess E Smidt
Massachusetts Institute of Technology
-
Sara Kadkhodaei
University of Illinois at Chicago
-
Bert A de Jong
Lawrence Berkeley National Laboratory, LBNL
-
Jorge A Munoz
University of Texas at El Paso
-
-
A machine learning-based interatomicpotential for Fe using marginalized graph kernels
ORAL
–
Presenters
-
Valeria I Arteaga Muniz
University of Texas at El Paso
Authors
-
Valeria I Arteaga Muniz
University of Texas at El Paso
-
Adrian De la Rocha Galán
University of Texas at El Paso
-
Vanessa J Meraz
University of Texas at El Paso
-
Yu-Hang Tang
Lawrence Berkeley National Laboratory
-
Ramon J Ravelo
University of Texas at El Paso
-
Bert A de Jong
Lawrence Berkeley National Laboratory, LBNL
-
Jorge A Munoz
University of Texas at El Paso
-
-
TitleOptimization of prediction model for elastic constants of high entropy alloys by using LIDG method
ORAL
–
Presenters
-
Genta Hayashi
Osaka Univ.
Authors
-
Genta Hayashi
Osaka Univ.
-
Katsuhiro Suzuki
Osaka Univ., Osaka University, Division of Materials and Manufacturing Science, Osaka University
-
Tomoyuki Terai
Osaka Univ.
-
Kazunori Sato
Osaka Univ., Osaka University, Division of Materials and Manufacturing Science, Osaka University, Osaka University, CSRN-Osaka
-
-
Building Chemical Property Models for Energetic Materials from Small Datasets using a Transfer Learning Approach
ORAL
–
Presenters
-
Brian C Barnes
DEVCOM Army Research Laboratory, US Army Research Lab Aberdeen
Authors
-
Brian C Barnes
DEVCOM Army Research Laboratory, US Army Research Lab Aberdeen
-
Joshua L Lansford
DEVCOM Army Research Laboratory
-
Betsy M Rice
DEVCOM Army Research Laboratory
-
Klavs F Jensen
Massachusetts Institute of Technology
-
-
Deep Learning Analysis of Polaritonic Wave Images
ORAL
–
Presenters
-
Suheng Xu
Columbia University
Authors
-
Suheng Xu
Columbia University
-
Alexander S McLeod
Columbia Univ, Columbia University
-
Xinzhong Chen
Stony Brook University (SUNY), State Univ of NY - Stony Brook
-
Daniel J Rizzo
Columbia University
-
Bjarke S Jessen
Columbia University
-
Ziheng Yao
State Univ of NY - Stony Brook, Stony Brook University (SUNY)
-
Zhicai Wang
State Univ of NY - Stony Brook
-
Zhiyuan Sun
Columbia Univ, Harvard University, Columbia University
-
Sara Shabani
Columbia University
-
Abhay N Pasupathy
Columbia University, Brookhaven National Laboratory & Columbia University
-
Andrew J Millis
Columbia University, Columbia University; Flatiron Institute, Columbia University, Flatiron Institute
-
Cory R Dean
Columbia University, Columbia Univ
-
James C Hone
Columbia University
-
Mengkun Liu
State Univ of NY - Stony Brook
-
Dmitri N Basov
Columbia University
-
-
Thermal Transport with Message Passing Neural Networks via the Green-Kubo Method
ORAL
–
Publication: M.F. Langer, F. Knoop, C. Carbogno, M. Scheffler, and M. Rupp, in preparation
Presenters
-
Marcel F Langer
Machine Learning Group, Technische Universität Berlin and NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society
Authors
-
Marcel F Langer
Machine Learning Group, Technische Universität Berlin and NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society
-
Florian Knoop
NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, The NOMAD Laboratory at the Fritz Haber Institute of the MPG
-
Christian Carbogno
NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Fritz-Haber-Institute, The NOMAD Laboratory at the Fritz Haber Institute of the MPG
-
Matthias Scheffler
NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Fritz-Haber Institute, The NOMAD Laboratory at the Fritz Haber Institute of the MPG
-
Matthias Rupp
Department of Computer and Information Science, University of Konstanz and NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society
-
-
Reducing Optimal Training Set Design with Many-Body Repulsive Potentials for High Accuracy Density-Functional Tight Binding Models
ORAL
–
Presenters
-
Huy Pham
Lawrence Livermore Natl Lab
Authors
-
Huy Pham
Lawrence Livermore Natl Lab
-
Rebecca K Lindsey
Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory
-
Laurence E Fried
Lawrence Livermore Natl Lab
-
Nir Goldman
Lawrence Livermore Natl Lab
-
-
Modeling of Lithium Dendrite Growth in Ionic Liquids with Lattice Monte Carlo Simulation Method and Deep Neural Networks
ORAL
–
Presenters
-
Tong Gao
Michigan Technological University
Authors
-
Tong Gao
Michigan Technological University
-
Issei Nakamura
Michigan Technological University
-